Preview

Вопросы гематологии/онкологии и иммунопатологии в педиатрии

Расширенный поиск

Планирование лучевой терапии на основе магнитно-резонансной томографии: первые шаги

https://doi.org/10.24287/1726-1708-2018-17-3-60-65

Аннотация

Планирование лучевой терапии – сложный процесс, который включает использование современных трехмерных диагностических методик – компьютерной томографии (КТ) и магнитнорезонансной томографии (МРТ). При создании лечебного плана обязательно используют КТ, которая позволяет собрать данные об электронной плотности облучаемого объема и применить их в расчетах дозного распределения. Более точно определить границы многих опухолей позволяет МРТ. В статье представлена методика получения псевдо-КТ-изображений для планирования лучевой терапии на основе МРТ без использования КТ. В исследование вошло 7 пациентов с диагнозом «медуллобластома», которые перед лучевой терапией проходили диагностику на МРТ с идентичными параметрами сканирования и КТ. Первые результаты, полученные при использовании данной методики, показывают перспективность применения исключительно МРТ при планировании лучевой терапии.

Об авторах

К. М. Фатеев
ФГБУ «Национальный медицинский исследовательский центр детской гематологии, онкологии и иммунологии им. Дмитрия Рогачева» Минздрава России; ФГАОУ ВО «Национальный исследовательский ядерный университет «МИФИ»
Россия

Фатеев Константин Михайлович, медицинский физик, отделение лучевой терапии 

117997, Москва, ГСП-7, ул. Саморы Машела, 1 



Г. В. Терещенко
ФГБУ «Национальный медицинский исследовательский центр детской гематологии, онкологии и иммунологии им. Дмитрия Рогачева» Минздрава России
Россия


В. Н. Беляев
ФГАОУ ВО «Национальный исследовательский ядерный университет «МИФИ»
Россия


М. Н. Смородина
ФГАОУ ВО «Национальный исследовательский ядерный университет «МИФИ»
Россия


А. В. Нечеснюк
ФГБУ «Национальный медицинский исследовательский центр детской гематологии, онкологии и иммунологии им. Дмитрия Рогачева» Минздрава России
Россия


Список литературы

1. Prabhakar R., Julka P., Ganesh T., Munshi A., Joshi R., Rath G. Feasibility of using MRI alone for 3D radiation treatment planning in brain tumors. Jpn J Clin Oncol 2007; 37 (6): 405–11.

2. Websy G., Adamis M.K., Edelmann R.R. Artifacts in MRI: description, causes and solutions. In: Edelmann R.R., Hesselink J.K., Zlatkin M.B. (edit), Clinical Magnetic Resonance Imaging. Philadelphia, Saunders 1996; p. 88–144.

3. Khoo V.S., Dearnaley D.P., Finnigan D.J., Padnani A., Tanner S.F., Magnetic resonance imaging (MRI): considerations and applications in radiotherapy treatment planning. Radiother Oncol 1997; 42: 1–15.

4. Wang D., Strugnell W., Cowin G., Doddrell D. Slaughter R. Geometric distortion in clinical MRI systems; Part 1: Evaluation using a 3D phantom. Magn Reson Imaging 2004; 22: 1211–21.

5. Baldwin L.N., Wachowicz K., Fallone B.G. A two-step scheme for distortion rectification of magnetic resonance images. Med Phys 2009; 36 (9): 3917–26.

6. Mah D., Steckner M., Hanlon A., Freeman G., Milsestone B., Mitra R. MRI simulation: effect of gradient distortions on three-dimensional prostate cancer plans. IJROBP 2002; 53 (3): 757–65.

7. Chen L., Price R. A., Wang L., Li J., McNeeley S., Ma C., et al. MRI-based treatment planning for radiotherapy: Dosimetric verification for prostate IMRT. IJROBP 2004; 60 (2): 636–47.

8. Petersch B., Bogner J., Fransson A., Lorang T., Potter R. Effects of geometric distortion in 0.2 T MRI on radiotherapy treatment planning of prostate cancer. Radiother Oncol 2004; 71: 55–64.

9. Chen Z., Ma C.-M., Paskalev K., Li J., Yang J., Richardson T., et al. Investigation of MR image distortion for radiotherapy treatment planning of prostate cancer. Phys Med Biol 2006; 51: 1393–403.

10. Crijns S.P.M., Bakker C.J.G., Seebinck P.R., de Leeuw H., Lagendijk J., Raaymakers B. Towards inherently distortion-free MR images for image-guided radiotherapy on an MRI accelerator. Phys Med Biol 2012; 57: 1349–58.

11. Stanescu T., Jans H.-S., Pervez N., Stavrev P., Fallone B. A study on the magnetic resonance imaging (MRI)-based radiation treatment planning of intracranial lesions. Phys Med Biol 2008; 53: 3579–93.

12. Lee Y.K., Bollet M., Charles-Edwards G., Flower M.A., Leach M.O., McNair H., et al. Radiotherapy treatment planning of prostate cancer using magnetic resonance imaging alone. Radiother Oncol 2003; 66: 203–16.

13. Pasquier D., Betrouni N., Vermandel M., Lacornerie T., Lartigau E., Rousseau J. MRI alone simulation for conformal radiation therapy of prostate cancer: Technical aspects. Conf Proc IEEEEng Med Biol Soc 2006; 1: 160–3.

14. Prabhakar R., Julka P.K., Ganesh T., Munshi A., Joshi R.C., Rath G.K. Feasibility of using MRI alone for 3D radiation treatment planning in brain tumors. Jpn J Clin Oncol 2006; 37 (6): 405–11.

15. Kapanen M., Collan J., Beule A., Seppälä T., Saarilahti K., Tenhunen M. Commissioning of MRI-only based treatment planning procedure for external beam radiotherapy of prostate.Magn Reson Med 2013; 70: 127–35.

16. Johansson A., Karlsson M., Nyholm T. CT substitute derived from MRI sequences with ultrashort echo time. Med Phys 2011; 38 (5): 2708–14.

17. Johansson A., Karlsson M., Yu J., Asklu-nd T., Nyholm T. Voxel-wise uncertainty in CT substitute derived from MRI. Med Phys 2012; 39 (6): 3283–90.

18. Kapanen M., Tenhunen M. T1/T2*-weighted MRI provides clinically relevant pseudo-CT density data from pelvic bones in MRI-only based radiotherapy treatment planning. Acta Oncol 2013: 52 (3): 612–8.

19. Korhonen J., Kapanen M., Keyrilainen J., Seppala T., Tuomikoski L., Tenhunen M. Absorbed doses behind bones with MR image-based dose calculations for radiotherapy treatment planning. Med Phys 2013; 40: 9.

20. Jonsson J.H., Karlsson M.G., Karlsson M., Nyholm T. Treatment planning using MRI data: An analysis of the dose calculation accuracy for different treatment regions. Radiat Oncol 2010; 5: 62.

21. Lambert J., Greer P.B., Menk F., Patterson J., Parker J., Dahl K., et al. MRI-guided prostate radiation therapy planning: Investigation of dosimetric accuracy of MRI-based dose planning. Radiother Oncol 2011; 98: 330–4.

22. Chen L., Price R.A.Jr., Nguyen T.B., Wang L., Li J.S., Qin L., et al. Dosimetric evaluation of MRI-based treatment planning for prostate cancer. Phys Med Biol 2004; 49: 5157–70.

23. Karotki A., Mah K., Meijer G., Meltsner M. Comparison of bulk electron density and voxel-based electron density treatment planning. J Appl Clin Med Phys 2011; 12 (4): 97–104.

24. Eilertsen K., Vestad L.N., Geier O., Skretting A. A simulation of MRI based dose calculations on the basis of radiotherapy planning CT images. Acta Oncol 2008; 47: 1294–302.

25. Dowling J.A., Lambert J., Parker J., Salvado O., Fripp J., Capp A., et al. An atlas-based electron density mapping method for magnetic resonance imaging (MRI)-alone treatment planning and adaptive MRI-based prostate radiation therapy. IJROBP 2012; 83: 5–11.

26. Nyholm T., Nyberg M., Karlsson M.G., Karlsson M. Systematisation of spatial uncer-tainties for comparison between a MR and CT-based radiotherapy workflow for prostate treatments. Radiat Oncol 2009; 4 (54): 1–9.

27. Korhonen J., Kapanen M., Keyriläinen J., Seppälä T., Tenhunen M. A dual model HU conversion from MRI intensity values within and outside of bone segment for MRI-based radiotherapy treatment planning of prostate cancer. Med Phys 2014; 41 (1): 1–12.


Рецензия

Для цитирования:


Фатеев К.М., Терещенко Г.В., Беляев В.Н., Смородина М.Н., Нечеснюк А.В. Планирование лучевой терапии на основе магнитно-резонансной томографии: первые шаги. Вопросы гематологии/онкологии и иммунопатологии в педиатрии. 2018;17(3):60-65. https://doi.org/10.24287/1726-1708-2018-17-3-60-65

For citation:


Fateev K.M., Tereshchenko G.V., Belyaev V.N., Smorodina M.N., Nechesnyuk A.V. Radiation treatment planning based on MRI only: first steps. Pediatric Hematology/Oncology and Immunopathology. 2018;17(3):60-65. (In Russ.) https://doi.org/10.24287/1726-1708-2018-17-3-60-65

Просмотров: 864


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1726-1708 (Print)
ISSN 2414-9314 (Online)