Preview

Вопросы гематологии/онкологии и иммунопатологии в педиатрии

Расширенный поиск

BCR-ABLl-подобный острый лимфобластный лейкоз у детей

https://doi.org/10.24287/1726-1708-2019-18-1-112-126

Полный текст:

Аннотация

Цель настоящего обзора - характеристика генетических особенностей BCR-ABL1-подобного острого лимфобластного лейкоза (ОЛЛ) у детей, а также устранение терминологической путаницы, связанной с понятиями BCR-ABLl-подобный и Ph-подобный ОЛЛ. Показана генетическая неоднородность BCR-ABL1-подобного ОЛЛ у детей, подробно представлены генетические аномалии, выявляемые у детей c BCR-ABLl-подобным ОЛЛ. Подробно описаны методы диагностики данного типа ОЛЛ, а также прогностическое значение BCR-ABL1-подобного ОЛЛ у детей.

Об авторах

Г. А. Цаур
ГАУЗ СО Областная детская клиническая больница; ГБОУ ВПО «Уральский государственный медицинский университет» Минздрава России; ГБОУ ВПО «Уральский государственный медицинский университет» Минздрава России
Россия

Цаур Григорий Анатольевич - доктор медицинских наук, заведующий лабораторией молекулярной биологии, иммуно-фенотипирования и патоморфологии ОДКБ.

620149, Екатеринбург, ул. Серафимы Дерябиной, 32



Ю. В. Ольшанская
ФГБУ «Национальный медицинский исследовательский центр детской гематологии, онкологии и иммунологии им. Дмитрия Рогачева» Минздрава России
Россия

Москва



А. Е. Друй
ФГБУ «Национальный медицинский исследовательский центр детской гематологии, онкологии и иммунологии им. Дмитрия Рогачева» Минздрава России
Россия

Москва



Список литературы

1. Arber D., Orazi A., Hasserjian R., Thiele J., Borowitz M., Le Beau M. et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 2016; 27(20): 2391-405.

2. Den Boer M., van Slegtenhorst M., De Menezes R., Cheok M., Buijs-Glad-dines J., Peters S., et al. A subtype of childhood acute lymphoblastic leukaemia with poor treatment outcome: a genome-wide classification study. Lancet Oncol 2009; 10 (2): 125-34.

3. Mullighan C., Su X., Zhang J., Radtke I., Phillips L., Miller C., et al. Deletion of IKZF1 and prognosis in acute lymphoblastic leukemia. N Engl J Med 2009; 360 (5): 470-80.

4. Mullighan C., Zhang J., Harvey R., Collins-Underwood J., Schulman B., Phillips L., еt al. JAK mutations in high-risk childhood acute lymphoblastic leukemia. Proc Natl Acad Sci USA 2009; 106 (23): 9414-8.

5. Yeoh E., Ross M., Shurtleff S., Williams W., Patel D., Mahfouz R., et al. Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 2002; 1 (2):133-43.

6. Ross M., Zhou X., Song G., Shurtleff S., Girtman K., Williams W., et al. Classification of pediatric acute lymphoblastic leukemia by gene expression profiling. Blood 2003; 102 (8): 2951-9.

7. Boer J., Marchante J., Evans W., Horstmann M., Escherich G., Pieters R., et al. BCR-ABL1-like cases in pediatric acute lymphoblastic leukemia: a comparison between DCOG/Erasmus MC and COG/St. Jude signatures. Haematologica 2015; 100 (9): e354-7.

8. Roberts K., Morin R., Zhang J., Hirst M., Zhao Y., Su X., et al. Genetic alterations activating kinase and cytokine receptor signaling in high-risk acute lymphoblastic leukemia. Cancer Cell 2012; 22 (2): 153-66.

9. Boer J., Steeghs E., Marchante J., Boeree A., Beaudoin J., Beverloo H., et al. Tyrosine kinase fusion genes in pediatric BCR-ABL1-like acute lymphoblastic leukemia. Oncotarget 2017; 8 (3): 4618-28.

10. Harvey R., Mullighan C., Wang X., Dobbin K., Davidson G., Bedrick E., et al. Identification of novel cluster groups in pediatric high-risk B-precursor acute lymphoblastic leukemia with gene expression profiling: correlation with genome-wide DNA copy number alterations, clinical characteristics, and outcome. Blood 2010; 116 (23): 4874-84.

11. Loh M., Zhang J., Harvey R., Roberts K., Payne-Turner D., Kang H., et al. Tyrosine kinome sequencing of pediatric acute lymphoblastic leukemia: a report from the Children's Oncology Group TARGET Project. Blood 2013; 121 (3): 485-8.

12. Harvey R., Kang H., Roberts K., Atlas S., Bedrick E., Gastier-Foster J., et al. Development and validation of a highly sensitive and specific gene expression classifier to prospectively screen and identify B-precursor acute lymphoblastic leukemia (ALL) patients with a Philadelphia chromosome-like (“Ph-like” or “BCR-ABL1-Like”) signature for therapeutic targeting and clinical intervention. 55th ASH meeting, New Orleans, December 7-10. Blood 2013; 122: 826.

13. Roberts K., Li Y., Payne-Turner D., Harvey R., Yang Y., Pei D., et al. Targetable kinase-activating lesions in Ph-like acute lymphoblastic leukemia. N Engl J Med 2014; 371 (11): 1005-15.

14. Roberts K., Pei D., Campana D., Payne-Turner D., Li Y., Cheng C., et al. Outcomes of children with BCR-ABL1-like acute lymphoblastic leukemia treated with risk-directed therapy based on the levels of minimal residual disease. J Clin Oncol 2014; 32 (27): 3012-20.

15. Tasian S., Hurtz C., Wertheim G., Bailey N., Lim M., Harvey R., et al. High incidence of Philadelphia chromosome-like acute lymphoblastic leukemia in older adults with B-ALL. Leukemia 2017; 31 (4): 981-4.

16. Reshmi S., Harvey R., Roberts K., Stonerock E., Smith A., Jenkins H., et al. Targetable kinase gene fusions in high-risk B-ALL: a study from the Children's Oncology Group. Blood 2017; 129 (25): 3352-61.

17. Roberts K., Reshmi S., Harvey R., Chen I., Patel K., Stonerock E., et al. Genomic and outcome analyses of Ph-like ALL in NCI standard-risk patients: a report from the Children's Oncology Group. Blood 2018; 132 (8): 815-24.

18. Boer J., den Boer M. BCR-ABL1-like acute lymphoblastic leukaemia: From bench to bedside. Eur J Cancer 2017; 82: 203-18.

19. Veer van der A., Waanders E., Pieters R., Willemse M., Van Reijmersdal S., Russell L., et al. Independent prognostic value of BCR-ABL1-like signature and IKZF1 deletion, but not high CRLF2 expression, in children with B-cell precursor ALL. Blood 2013; 122 (15): 2622-9.

20. Boer J., Koenders J., van der Holt B., Exalto C., Sanders M., Cornelissen J., et al. Expression profiling of adult acute lymphoblastic leukemia identifies a BCR-ABL1-like subgroup characterized by high non-response and relapse rates. Haematologica 2015; 100 (7): e261-4.

21. Herold T., Schneider S., Metzeler K., Neumann M., Hartmann L., Roberts K., et al. Adults with Philadelphia chromosome-like acute lymphoblastic leukemia frequently have IGH-CRLF2 and JAK2 mutations, persistence of minimal residual disease and poor prognosis. Haematologica 2017; 102 (1): 130-8.

22. Mullighan C., Collins-Underwood J., Phillips L., Loudin M., Liu W., Zhang J., et al. Rearrangement of CRLF2 in B-progenitor- and Down syndrome-associated acute lymphoblastic leukemia. Nat Genet 2009; 41 (11): 1243-6.

23. Harvey R., Mullighan C., Chen I., Wharton W., Mikhail F., Carroll A., et al. Rearrangement of CRLF2 is associated with mutation of JAK kinases, alteration of IKZF1, Hispanic/Latino ethnicity, and a poor outcome in pediatric B-progenitor acute lymphoblastic leukemia. Blood 2010; 115 (26): 5312-21.

24. Schwab C., Enshaei A., Roberts K., Russell L., Harvey R., I-Ming L., et al. The frequency and outcome of Ph-like ALL associated abnormalities in childhood acute lymphoblastic leukaemia treated on MRC UKALL2003 58th ASH meeting, San Diego, December 3-6, 2016. Blood 2016; 128: 2914.

25. Schmah J., Fedders B., Panzer-Grum-ayer R., Fischer S., Zimmermann M., Dagdan E., et al. Molecular characterization of acute lymphoblastic leukemia with high CRLF2 gene expression in childhood. Pediatr Blood Cancer 2017; 64 (10); e26539.

26. Moorman A., Richards S., Martineau M., Cheung K., Robinson H., Jalali G., et al. Outcome heterogeneity in childhood high-hyperdiploid acute lymphoblastic leukemia. Blood 2003; 102 (8): 2756-62.

27. Graux C., Cools J., Melotte C., Quent-meier H., Ferrando A., Levine R., et al. Fusion of NUP214 to ABL1 on amplified episomes in T-cell acute lymphoblastic leukemia. Nat Genet 2004; 36 (10): 1084-9.

28. Cirmena G., Aliano S., Fugazza G., Bruzzone R., Garuti A., Bocciardi R., et al. A BCR-JAK2 fusion gene as the result of a t(9;22)(p24;q11) in a patient with acute myeloid leukemia. Cancer Genet Cytogenet 2008; 183 (2): 105-8.

29. Griesinger F., Hennig H., Hillmer F., Podleschny M., Steffens R., Pies A., et al. A BCR-JAK2 fusion gene as the result of a t(9;22)(p24;q11.2) translocation in a patient with a clinically typical chronic myeloid leukemia. Genes Chromosomes Cancer 2005; 44 (3): 329-33.

30. Shochat C., Tal N., Bandapalli O., Palmi C., Ganmore I., te Kronnie G., et al. Gain-of-function mutations in interleukin-7 receptor-a (IL7R) in childhood acute lymphoblastic leukemias. J Exp Med 2011; 208 (5): 901-8.

31. Zenatti P., Ribeiro D., Li W., Zuurbier L., Silva M., Paganin M., et al. Oncogenic IL7R gain-of-function mutations in childhood T-cell acute lymphoblastic leukemia. Nat Genet 2011; 43 (10): 932-9.

32. Zhang J., Ding L., Holmfeldt L., Wu G., Heatley S.-L., Payne-Turner D., et al. The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature 2012; 481 (7380): 157-63.

33. Roberts K., Yang Y., Payne-Turner D., Lin W., Files J., Dickerson K., et al. Oncogenic role and therapeutic targeting of ABL-class and JAK-STAT activating kinase alterations in Ph-like ALL. Blood Adv 2017; 1 (20): 1657-71.

34. Tasian S., Assad A., Hunter D., Du Y., Loh M. A Phase 2 Study of Ruxolitinib with Chemotherapy in Children with Philadelphia Chromosomelike Acute Lymphoblastic Leukemia (INCB18424-269/AALL1521): Dose-Finding Results from the Part 1 Safety Phase 60th ASH meeting, San Diego, December 7-10, 2018. Blood 2018; 132: 555.

35. Siegele B.J., Nardi V. Laboratory testing in BCR-ABL1-like (Philadelphia-like) B-lymphoblastic leukemia/lymphoma. Am J Hematol 2018; 93 (7): 971-7.

36. Heatley S., Sadras T., Kok C., Niever-gall E., Quek K., Dang P., et al. High prevalence of relapse in children with Philadelphia-like acute lymphoblastic leukemia despite risk-adapted treatment. Haematologica 2017; 102 (12): e490-e493.

37. Chiaretti S., Messina M., Grammatico S., Piciocchi A., Fedullo A., Di Giacomo F., et al. Rapid identification of BCR/ABL1-like acute lymphoblastic leukaemia patients using a predictive statistical model based on quantitative real time-polymerase chain reaction: clinical, prognostic and therapeutic implications. Br J Haematol 2018; 181 (5): 642-52.

38. Jain N., Roberts K., Jabbour E., Patel K., Eterovic A., Chen K., et al. Ph-like acute lymphoblastic leukemia: a high-risk subtype in adults. Blood 2017; 129 (5): 572-81.

39. Chiaretti S., Li X., Gentleman R., Vitale A., Wang K., Mandelli F., et al. Gene expression profiles of B-lineage adult acute lymphocytic leukemia reveal genetic patterns that identify lineage derivation and distinct mechanisms of transformation. Clin Cancer Res 2005; 11 (20): 7209-19.

40. Haferlach T., Kohlmann A., Wieczo-rek L., Basso G., Kronnie G.T., Bene M.C., et al. Clinical utility of microarray-based gene expression profiling in the diagnosis and subclassification of leukemia: report from the International Microarray Innovations in Leukemia Study Group. J Clin Oncol 2010; 28: 2529-37.

41. Hoffmann K., Firth M., Beesley A., Freitas J., Ford J., Senanayake S., et al. Prediction of relapse in paediatric pre-B acute lymphoblastic leukaemia using a three-gene risk index. Br J Haematol 2008; 140 (6): 656-64.

42. Ernst T., Score J., Deininger M., Hidalgo-Curtis C., Lackie P., Ershler W., et al. Identification of FOXP1 and SNX2 as novel ABL1 fusion partners in acute lymphoblastic leukaemia. Br J Haematol 2011; 153 (1): 43-6.

43. Soler G., Radford-Weiss I., Ben-Abde-lali R., Mahlaoui N., Ponceau J., Macintyre E., et al. Fusion of ZMIZ1 to ABL1 in a B-cell acute lymphoblastic leukaemia with a t(9;10)(q34;q22.3) translocation. Leukemia 2008; 22 (6): 1278-80.

44. Chiaretti S., Brugnoletti F., Messina M., Paoloni F., Fedullo A-L., Piciocchi A., et al. CRLF2 overexpression identifies an unfavourable subgroup of adult B-cell precursor acute lymphoblastic leukemia lacking recurrent genetic abnormalities. Leuk Res 2016; 41: 36-42.

45. Imamura T., Kiyokawa N., Kato M., Imai C., Okamoto Y., Yano M., et al. Characterization of pediatric Philadelphia-negative B-cell precursor acute lymphoblastic leukemia with kinase fusions in Japan. Blood Cancer J 2016; 6: e419.

46. Yap K., Furtado L., Kiyotani K., Curran E., Stock W., McNeer J., et al. Diagnostic evaluation of RNA sequencing for the detection of genetic abnormalities associated with Ph-like acute lymphoblastic leukemia (ALL). Leuk Lymphoma 2017; 58 (4): 950-8.

47. Palmi C., Vendramini E., Silvestri D., Longinotti G., Frison D., Cario G., et al. 55. Poor prognosis for P2RY8-CRLF2 fusion but not for CRLF2 over-expression in children with intermediate risk B-cell precursor acute lymphoblastic leukemia. Leukemia 2012; 26 (10): 2245-53.

48. Kuiper R., Waanders E., van der Velden V., van Reijmersdal S., Venkatacha- 56. lam R., Scheijen B., et al. IKZF1 deletions predict relapse in uniformly treated pediatric precursor B-ALL. Leukemia 2010; 24: 1258-64.

49. Kuiper R., Schoenmakers E., van Reijmersdal S., Hehir-Kwa J., van Kessel A., van Leeuwen F., et al. High-resolution 57. genomic profiling of childhood ALL reveals novel recurrent genetic lesions affecting pathways involved in lympho- 58. cyte differentiation and cell cycle progression. Leukemia 2007; 21: 1258-66.

50. Mullighan C., Goorha S., Radtke I., Miller C., Coustan-Smith E., Dalton J., et al. Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature 2007; 446: 758-64.

51. Dorge P., Meissner B., Zimmermann M., Moericke A., Schrauder A., Bouquin J.P., et al. IKZF1 deletion is an independent predictor of outcome in pediatric acute lymphoblastic leukemia treated according to the ALL-BFM 2000 protocol. Haematologica 2013; 98: 428-32.

52. Chen I.-M., Harvey R., Mullighan C., Gastier-Foster J., Wharton W., Kang H., et al., Outcome modeling with CRLF2, IKZF1, JAK, and minimal residual disease in pediatric acute lymphoblastic leukemia: a Children's Oncology Group Study. Blood 2012; 119 (15): 3512-22.

53. Palmi C., Valsecchi M.G., Longinotti G., Silvestri D., Carrino V., Conter V., et al. What is the relevance of Ikaros gene deletions as a prognostic marker in pediatric Philadelphia-negative B-cell precursor acute lymphoblastic leukemia? Haematologica 2013; 98: 1226-31.

54. Ofverholm I., Tran A.N., Heyman M., Zachariadis V., Nordenskjold, M., Nordgren М., et al. Impact of IKZF1 deletions and PAX5 amplifications in pediatric B-cell precursor ALL treated according to NOPHO protocols. Leukemia 2013; 27: 1936-9.

55. Цаур Г.А., Друй А.Е., Солодовников А.Г., Попов А.М., Шапочник А.П., Вахонина Л.В. и др. Делеции гена IKZF1 - независимый прогностический фактор у детей с острым лимфобластным лейкозом из B-линейных предшественников. Онкогематология 2016; 11 (4): 33-48.

56. Stanulla M., Dagdan E., Zaliova M., Moricke A., Palmi C., Cazzaniga G., et al. IKZF1plus defines a new minimal residual disease-dependent very-poor prognostic profile in pediatric b-cell precursor acute lymphoblastic leukemia. J Clin Oncol 2018; 36 (12): 1240-9.

57. Pui C.-H., Relling M., Downing J. Acute lymphoblastic leukemia. N Engl J Med 2004; 350 (15): 1535-48.

58. Pieters R., Carroll W. Biology and treatment of acute lymphoblastic leukemia. Pediatr Clin North Am 2008; 55 (1): 1-20.


Для цитирования:


Цаур Г.А., Ольшанская Ю.В., Друй А.Е. BCR-ABLl-подобный острый лимфобластный лейкоз у детей. Вопросы гематологии/онкологии и иммунопатологии в педиатрии. 2019;18(1):112-126. https://doi.org/10.24287/1726-1708-2019-18-1-112-126

For citation:


Tsaur G.A., Olshanskaya Y.V., Druy A.E. BCR-ABLl-like pediatric acute lymphoblastic leukemia. Pediatric Hematology/Oncology and Immunopathology. 2019;18(1):112-126. (In Russ.) https://doi.org/10.24287/1726-1708-2019-18-1-112-126

Просмотров: 40


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1726-1708 (Print)
ISSN 2414-9314 (Online)