Preview

Вопросы гематологии/онкологии и иммунопатологии в педиатрии

Расширенный поиск

Сравнение лабораторных показателей патогенредуцированных и рентгеноблученных эритроцитных взвесей

https://doi.org/10.24287/1726-1708-2018-17-1-64-74

Полный текст:

Аннотация

Эффективная инактивация патогенов и лейкоцитов и безопасный токсикологический профиль цельной крови, обработанной технологией редукции патогенов с применением рибофлавина и ультрафиолета (RF  UV), описаны в литературе. Испытания такой крови на животных моделях и здоровых добровольцах продемонстрировали отсутствие неоантигенности и других серьезных проблем безопасности. Эритровзвеси (ЭВ) готовят обычно из предварительно не обработанной цельной крови, а инактивацию патогенов и лейкоцитов в них проводят путем рентгеновского и гамма-облучения. Цель работы - сравнение качества ЭВ, полученных из цельной крови, предварительно обработанной RF  UV, и стандартно инактивированных рентгеновским облучением, а также установление срока возможного хранения ЭВ, полученных из крови, обработанной RF  UV. Образцы цельной крови (450 мл) были получены от здоровых доноров (n = 50). В день донации (день 0) 25 образцов подвергали инактивации патогенов с применением RF  UV (система инактивации патогенов Mirasol, Terumo BCT Inc.) с последующим выделением ЭВ (опытные образцы). Из остальных необлученных образцов цельной крови (n = 25) сначала были получены ЭВ, которые затем (в день 0) были инактивированы путем рентгеновского облучения в дозе 25 Гр (контрольные образцы). Все полученные ЭВ хранили при 6  2 С в растворе SAGM в течение 4 нед. Исследованы показатели: гематокрит, рН, концентрации общего и свободного гемоглобина, ионов калия, глюкозы, лактата, АТФ и восстановленного глютатиона, экспрессия фосфатидилсерина на мембранах эритроцитов, показатели гемолиза и осмотической резистентности клеток. Измерения проводили во всех образцах исходной цельной крови (до обработки в день 0) и в образцах контрольных (после обработки рентгеновским облучением) и опытных ЭВ в день 0, на 7, 14 и 21-й дни хранения. На 28-й день хранения проверяли только стерильность хранившихся ЭВ. В ходе хранения отмечены статистически значимое ухудшение осмотической резистентности эритроцитов, повышение гематокрита, концентрации лактата и более выраженный гемолиз клеток в опытной группе ЭВ по сравнению с контролем. Показатели общего гемоглобина, рН, концентрации внеклеточного калия, АТФ, глутатиона и экспрессии фосфатидилсерина не отличались между группами. Качество ЭВ (уровень гемолиза), полученных из обработанной RF  UV цельной крови и хранившихся в растворе SAGM, в течение 14 дней хранения оставалось приемлемым. Из-за более выраженного гемолиза клиническое использование этих взвесей после 14 дней хранения без дополнительных методов обработки (например, отмывания) невозможно.

Об авторах

И.Б. Кумукова
ФГБУ «Национальный медицинский исследовательский центр детской гематологии, онкологии и иммунологии им. Дмитрия Рогачева» Минздрава России
Россия


П.Е. Трахтман
ФГБУ «Национальный медицинский исследовательский центр детской гематологии, онкологии и иммунологии им. Дмитрия Рогачева» Минздрава России
Россия


Н.Н. Старостин
ФГБУ «Национальный медицинский исследовательский центр детской гематологии, онкологии и иммунологии им. Дмитрия Рогачева» Минздрава России
Россия


Д.В. Борсакова
ФГБУ «Национальный медицинский исследовательский центр детской гематологии, онкологии и иммунологии им. Дмитрия Рогачева» Минздрава России
Россия


А.А. Игнатова
ФГБУ «Национальный медицинский исследовательский центр детской гематологии, онкологии и иммунологии им. Дмитрия Рогачева» Минздрава России
Россия


А.Ю. Федотов
ФГБУ «Национальный медицинский исследовательский центр детской гематологии, онкологии и иммунологии им. Дмитрия Рогачева» Минздрава России
Россия


М.Е. Плахотник
ФГБОУ ВО «Московский государственный университет им. М.В. Ломоносова»
Россия


Ф.И. Атауллаханов
ФГБУ «Национальный медицинский исследовательский центр детской гематологии, онкологии и иммунологии им. Дмитрия Рогачева» Минздрава России, ФГБУН «Центр теоретических проблем физико-химической фармакологии» РАН, ФГБОУ ВО «Московский государственный университет им. М.В. Ломоносова»
Россия


Список литературы

1. Klein H.G., Glynn S.A., Ness P.M., Blajchman M.A. Research opportunities for pathogen reduction/inactivation of blood components: summary of an NHLBI workshop. Transfusion 2009; 49 (6): 1262-8.

2. Benjamin R.J., McCullough J., Mintz P.D., Snyder E., Spotnitz W.D., Rizzo R.J., et al. Therapeutic efficacy and safety of red blood cells treated with a chemical process (S-303) for pathogen inactivation: a Рнase III clinical trial in cardiac surgery patients. Transfusion 2005; 45 (11): 1739-49.

3. Conlan M.G., Stassinopoulos A., Garratty G., Wages D., Corash L., Wood L., et al. Antibody formation to S-303-treated RBCS in the setting of chronic RBC transfusion. Blood 2004; 104 (11): 382. Available at: http://www.bloodjournal.org/content/104/11/382.

4. Kasai H., Yamaizumi Z., Yamamoto F., Bessho T., Nishimura S., Berger M., et al. Рнotosensitized formation of 8-hydroxyguanine (7,8-dihydro-8-oxoguanine) in DNA by riboflavin. Nucleic Acids Symp Ser 1992; (27): 181-2.

5. Korycka-Dahl M., Richardson T. Рнotodegradation of DNA with fluorescent light in the presence of riboflavin, and рнotoprotection by flavin triplet-state quenchers. Biochim Bioрнys Acta 1980; 610 (2): 229-34.

6. Kuratomi K., Kobayashi Y. Studies on the interactions between DNA and flavins. Biochim Bioрнys Acta 1977; 476 (3): 207-17.

7. Goodrich R.P., Platz M.S. The design and development of selective, рнotoactivated drugs for sterilization of blood products. Drugs Future 1997; 22 (2): 159-71.

8. Reddy H.L., Dayan A.D., Cavagnaro J., Gad S., Li J., Goodrich R.P. Toxicity testing of a novel riboflavin-based technology for pathogen reduction and white blood cell inactivation. Transfus Med Rev 2008; 22 (2): 133-53.

9. Yonemura S., Doane S., Keil S., Goodrich R., Pidcoke H., Cardoso M. Improving the safety of whole blood-derived transfusion products with a riboflavin-based pathogen reduction technology. Blood Transfus 2017; 15 (4): 357-64.

10. Owusu-Ofori S., Kusi J., Owusu-Ofori A., Freimanis G., Olver C., Martinez C.R., et al. Treatment of whole blood with riboflavin and UV light: impact on malaria parasite viability and whole blood storage. Shock 2015; 44 (Suppl 1): 33-8.

11. Tonnetti L., Thorp A.M., Reddy H.L., Keil S.D., Doane S.K., Goodrich R.P., et al. Reduction of Leishmania donovani infectivity in whole blood using riboflavin and ultraviolet light. Transfusion 2015; 55 (2): 326-9.

12. Tonnetti L., Thorp A.M., Reddy H.L., Keil S.D., Goodrich R.P., Leiby D.A. Evaluating pathogen reduction of Trypanosomacruzi with riboflavin and ultraviolet light for whole blood. Transfusion 2012; 52 (2): 409-16.

13. Tonnetti L., Thorp A.M., Reddy H.L., Keil S.D., Goodrich R.P., Leiby D.A. Riboflavin and ultraviolet light reduce the infectivity of Babesiamicroti in whole blood. Transfusion 2013; 53 (4): 860-7.

14. McDonald C.P., Roy A., Mahajan P., Smith R., Charlett A., Barbara J.A. Relative values of the interventions of diversion and improved donor-arm disinfection to reduce the bacterial risk from blood transfusion. Vox Sang 2004; 86 (3): 178-82.

15. Goodrich R.P., Gilmour D., Hovenga N., Keil S.D. A laboratory comparison of pathogen reduction technology treatment and culture of platelet products for addressing bacterial contamination concerns. Transfusion 2009; 49 (6): 1205-16.

16. Fast L.D., DiLeone G., Cardarelli G., Li J., Goodrich R. Mirasol PRT treatment of donor white blood cells prevents the development of xenogeneic graft-versus-host disease in Rag2-/-gamma c-/-double knockout mice. Transfusion 2006; 46 (9): 1553-60.

17. Fast L.D., DiLeone G., Marschner S. Inactivation of human white blood cells in platelet products after pathogen reduction technology treatment in comparison to gamma irradiation. Transfusion 2011; 51 (7): 1397-404.

18. Marschner S., Fast L.D., Baldwin W.M. 3rd, Slichter S.J., Goodrich R.P. White blood cell inactivation after treatment with riboflavin and ultraviolet light. Transfusion 2010; 50 (11): 2489-98.

19. Jackman R., Heitman J., Marschner S., Goodrich R., Norris P.J. Understanding loss of donor white blood cell immunogenicity following pathogen reduction: mechanisms of action in UV illumination and riboflavin treatment. Transfusion 2009; 49 (12): 2686-99.

20. Asano H., Lee C.Y., Fox-Talbot K., Koh C.M., Erdinc M.M., Marschner S., et al. Treatment with riboflavin and ultraviolet light prevents alloimmunization to platelet transfusions and cardiac transplants. Transplantation 2007; 84 (9): 1174-82.

21. Fast L.D., DiLeone G., Li J., Goodrich R. Functional inactivation of white blood cells by Mirasol treatment. Transfusion 2006; 46 (4): 642-8.

22. Cancelas J.A., Rugg N., Fletcher D., Pratt P.G., Worsham D.N., Dunn S.K., et al. In vivo viability of stored red blood cells derived from riboflavin plus ultraviolet light-treated whole blood. Transfusion 2011; 51 (7): 1460-8.

23. Hervig T., Braathen H., Jaboori A.A., et al. Platelet recovery and survival after whole blood treated with mirasol pathogen reduction. Transfusion 2016; 56 (suppl 4), SP 434: 194A.

24. Doane S.K., Yonemura S.S., Hovenga N., et al. Evaluation of the acute toxicity of red blood cells derived from riboflavin and UV light-treated whole blood in a canine red blood cell exchange model. Transfusion 2016; 56 (suppl 4), SP 432: 193A.

25. Okoye O.T., Reddy H., Wong M.D., Doane S., Resnick S., Karamanos E., et al. Large animal evaluation of riboflavin and ultraviolet light-treated whole blood transfusion in a diffuse, nonsurgical bleeding porcine model. Transfusion 2015; 55 (3): 532-43.

26. Goodrich R.P., Murthy K.K., Doane S.K., Fitzpatrick C.N., Morrow L.S., Arndt P.A., et al. Evaluation of potential immune response and in vivo survival of riboflavin-ultraviolet light-treated red blood cells in baboons. Transfusion 2009; 49 (1): 64-74.

27. Cancelas J.A., Slichter S.J., Rugg N., Pratt P.G., Nestheide S., Corson J., et al. Red blood cells derived from whole blood treated with riboflavin and ultraviolet light maintain adequate survival in vivo after 21 days of storage. Transfusion 2017; 57 (5): 1218-25.

28. Allain J.P., Owusu-Ofori A.K., Assennato S.M., Marschner S., Goodrich R.P., Owusu-Ofori S. Effect of Plasmodium inactivation in whole blood on the incidence of blood transfusion-transmitted malaria in endemic regions: the African Investigation of the Mirasol System (AIMS) randomised controlled trial. Lancet 2016; 387 (10029): 1753-61.

29. Shcherbachenko I., Lisovskaya I., Tikhonov V. Oxidation-induced calcium-dependent dehydration of normal human red blood cells. Free Radical Res 2007; 41 (5): 536-45.

30. Hans A., Adenosine-5′-triрнosрнate: determination with рнosрнoglycerate kinase, In Methods of Enzymatic Analysis (Second Printing, Revised), edited by Hans-Ulrich Bergmeyer H-U., Academic Press, 1965, pp. 539-58.

31. Pradedova E.V., Nimaeva O.D., Putilina T.E., Semenova N.V., Sobenin A.M., Salyaev R.K. Determination of glutathione and its redox status in isolated vacuoles of red beetroot cells. J Stress Рнysiol Biochem 2016; 12 (1): 87-107.

32. Hess J.R. Red cell storage. J Proteomics 2010; 73 (3): 368-73.

33. Ruddell J.P., Babcock J.G., Lippert L.E., Hess J.R. Effect of 24 hours of storage at 25°C on the in vitro storage characteristics of CPDA-1 packed red blood cells. Transfusion 1998; 38 (5): 424-8.

34. Hall T.L., Barnes A., Miller J.R., Bethencourt D.M., Nestor L. Neonatal mortality following transfusion of red cells with high plasma potassium levels. Transfusion 1993; 33 (7): 606-9.

35. Dumaswala U.J., Wilson M.J., Wu Y.L., Wykle J., Zhuo L., Douglass L.M., et al. Glutathione loading prevents free radical injury in red blood cells after storage. Free Radical Res 2000; 33 (5): 517-29.

36. Mustafa I., Marwani A., Mamdouh N.K., Abdulla K.N., Hadwan T. Time dependent assessment of morрнological changes: leukodepleted packed red blood cells stored in SAGM. Biomed Res Int 2016; 45: 294-34.

37. Silliman C.C. The two-event model of transfusion-related acute lung injury. Crit Care Med 2006; 34 (suppl 5): s124-31.

38. Lang E., Qadri S.M., Lang F. Killing me softly - suicidal erythrocyte death. Int J Biochem Cell Biol 2012; 44 (8): 1236-43.

39. Lang F., Qadri S.M. Mechanisms and significance of eryptosis, the suicidal death of erythrocytes. Blood Purif 2012; 33 (1-3): 125-30.

40. Lu C., Shi J., Yu H., Hou J., Zhou J. Procoagulant activity of long-term stored red blood cells due to рнosрнatidylserine exposure. Transfus Med 2011; 21 (3): 150-7.

41. Hod E.A., Spitalnik S.L. Harmful effects of transfusion of older stored red blood cells: iron and inflammation. Transfusion 2011; 51 (4): 881-5.

42. Hoehn R.S., Jernigan P.L., Japtok L., Chang, A.L., Midura E.F.; Caldwell C.C., et al. Acid sрнingomyelinase inhibition in stored erythrocytes reduces transfusion associated lung inflammation. Ann Surg 2017; 265 (1): 218-26.

43. Antonelou M.H., Kriebardis A.G., Papassideri I.S. Aging and death signalling in mature red cells: from basic science to transfusion practice. Blood Transfus 2010; 8 (supp l3): s39-47.

44. Gilson C.R., Kraus T.S., Hod E.A., Hendrickson J.E., Spitalnik S.L., Christoрнer D., Hillyer C.D., et al. A novel mouse model of red blood cell storage and posttransfusion in vivo survival. Transfusion 2009; 49 (8): 1546-53.

45. Qadri S.M., Chen D., Schubert P., Perruzza D.L., Bhakta V., Devine D.V., et al. Pathogen inactivation by riboflavin and ultraviolet light illumination accelerates the red blood cell storage lesion and promotes eryptosis. Transfusion 2017; 57 (3): 661-73.

46. Harmening D. Clinical Hematology and Fundamentals of Hemostasis. 4th. edition, Рнiladelрнia, Pa, USA: F. A. Davis Company; 2002. Laboratory methods; p. 576.

47. Greer J., Arber D. Wintrobe's Clinical Hematology. 13th edition, Рнiladelрнia, Pa, USA: Wolters Kluwer Health; 2013. Examination of the blood and bone marrow; p. 4.

48. Relevy H., Koshkaryev A., Manny N., Yedgar S., Barshtein G. Blood banking-induced alteration of red blood cell flow properties. Transfusion 2008; 48 (1): 136-46.

49. Schubert P., Culibrk B., Karwal S., Serrano K., Levin E., Bu D., et al. Whole blood treated with riboflavin and ultraviolet light: quality assessment of all blood components produced by the buffy coat method. Transfusion 2015; 55 (4): 815-23.

50. Herzig M., Fedyk C.G., Rodriguez A., Montgomery R., Kamucheka R.M., Pidcoke H., et al. Blood component separation of pathogen-reduced whole blood by the PRP method produces acceptable red cells, but platelet yields and function are diminished. Transfusion 2016; 56 (suppl 4): 78A.

51. Custer B., Agapova M., Martinez R.H. The cost-effectiveness of pathogen reduction technology as assessed using a multiple risk reduction model. Transfusion 2010; 50 (11): 2461-73.

52. Технический регламент о требованиях безопасности крови, ее продуктов, кровезамещающих растворов и технических средств, используемых в трансфузионно-инфузионной тера-пии (утвержден постановлением Прави-тельства РФ от 26 января 2010 г. № 9).

53. Zubair A.C. Clinical impact of blood storage lesions. Am J Hematol 2010; 85 (2): 117-22.


Для цитирования:


Кумукова И., Трахтман П., Старостин Н., Борсакова Д., Игнатова А., Федотов А., Плахотник М., Атауллаханов Ф. Сравнение лабораторных показателей патогенредуцированных и рентгеноблученных эритроцитных взвесей. Вопросы гематологии/онкологии и иммунопатологии в педиатрии. 2018;17(1):64-74. https://doi.org/10.24287/1726-1708-2018-17-1-64-74

For citation:


Kumukova I.V., Trakhtman P.E., Starostin N.N., Borsakova D.V., Ignatova A.A., Fedotov A.Y., Plakhotnik M.E., Ataullakhanov F.I. Comparison of laboratory parameters of X-ray irradiated erythrocyte suspensions and suspensions, prepared from whole blood pre-treated with ultraviolet in the presence of riboflavin. Pediatric Hematology/Oncology and Immunopathology. 2018;17(1):64-74. (In Russ.) https://doi.org/10.24287/1726-1708-2018-17-1-64-74

Просмотров: 75


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1726-1708 (Print)
ISSN 2414-9314 (Online)