Preview

Вопросы гематологии/онкологии и иммунопатологии в педиатрии

Расширенный поиск

Молекулярно-генетические характеристики глиом у детей

https://doi.org/10.24287/1726-1708-2019-18-4-109-117

Полный текст:

Аннотация

Глиомы – самые распространенные опухоли центральной нервной системы с чрезвычайно вариабельным клиническим течением. Широкое распространение высокопроизводительных технологий в исследовательской практике позволило расширить знания о молекулярной биологии глиальных опухолей, а также определить новые патогенетические и прогностические маркеры для подбора персонализированной противоопухолевой терапии. В обзоре обсуждается роль соматических мутаций в генах BRAF, H3F3A, Hist1H3B/С, IDH1/2, транслокаций с участием генов BRAF, NTRK1/2/3 и нарушений числа копий генов CDKN2A/B в патогенезе глиом у детей, а также возможность стратификации пациентов на группы риска в соответствии с прогностической значимостью патогенных вариантов.

Об авторах

М. А. Зайцева
ФГБУ «Национальный медицинский исследовательский центр детской гематологии, онкологии и иммунологии им. Дмитрия Рогачева» Минздрава России
Россия

Контактная информация: Зайцева Маргарита Алексеевна, врач клинической лабораторной диагностики лаборатории молекулярной онкологии НМИЦ детской гематологии, онкологии и иммунологии им. Дмитрия Рогачева Минздрава России.

Адрес: 117997, Москва, ГСП-7, ул. Саморы Машела, 1


Л. А. Ясько
ФГБУ «Национальный медицинский исследовательский центр детской гематологии, онкологии и иммунологии им. Дмитрия Рогачева» Минздрава России
Россия
Москва


Л. И. Папуша
ФГБУ «Национальный медицинский исследовательский центр детской гематологии, онкологии и иммунологии им. Дмитрия Рогачева» Минздрава России
Россия
Москва


А. Е. Друй
ФГБУ «Национальный медицинский исследовательский центр детской гематологии, онкологии и иммунологии им. Дмитрия Рогачева» Минздрава России; ГАУЗ СО «Институт медицинских клеточных технологий»
Россия
Москва


Список литературы

1. Ostrom Q.T., Gittleman H., Truitt G., Boscia A., Kruchko C., Barnholtz-Sloan J.S. CBTRUS Statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2011–2015. Neuro Oncol 2018; 20: iv1-iv86.

2. Louis D.N., Perry A., Reifenberger G., von Deimling A., Figarella-Branger D., Cavenee W.K., et al. The 2016 World Health Organization classification of tumors of the Central Nervous System: a summary. Acta Neuropathol 2016; 131: 803–20.

3. Lassaletta A., Zapotocky M., Mistry M., Ramaswamy V., Honnorat M., Krishnatry R., et al. Therapeutic and Prognostic Implications of BRAF V600E in Pediatric Low-Grade Gliomas. J Clin Oncol 2017; 35 (25): 2934–41.

4. Eisenhardt A.E., Olbrich H., Röring M., Janzarik W., Anh T.N., Cin H., et al. Functional characterization of a BRAF insertion mutant associated with pilocytic astrocytoma. Int J Cancer 2011 Nov 1; 129 (9): 2297–303.

5. Penman C.L., Faulkner C., Lowis S.P., Kurian K.M. Current Understanding of BRAF Alterations in Diagnosis, Prognosis, and Therapeutic Targeting in Pediatric Low-Grade Gliomas. Front Oncol 2015; 5: 54–64.

6. Sturm D., Pfister S.M., Jones D.T.W. Pediatric Gliomas: Current Concepts on Diagnosis, Biology, and Clinical Management. J Clin Oncol 2017; 35 (21): 2370–7.

7. Gierke M., Sperveslage J., Schwab D., Beschorner R., Ebinger M., Schuhmann M.U., et al. Analysis of IDH1-R132 mutation, BRAF V600 mutation and KIAA1549–BRAF fusion transcript status in central nervous system tumors supports pediatric tumor classification. J Cancer Res Clin Oncol 2016; 142 (1): 89–100.

8. Schindler G., Capper D., Meyer J., Janzarik W., Omran H., Herold-Mende C., et al. Analysis of BRAF V600E mutation in 1,320 nervous system tumors reveals high mutation frequencies in pleomorphic xanthoastrocytoma, ganglioglioma and extra-cerebellar pilocytic astrocytoma. Acta Neuropathol 2011; 121 (3): 397–405.

9. Jones D.T., Hutter B., Jäger N., Korshunov A., Kool M., Warnatz H.J., et al. Recurrent somatic alterations of FGFR1 and NTRK2 in pilocytic astrocytoma. Nat Genet 2013 Aug; 45 (8): 927–32.

10. Zhang J., Wu G., Miller C.P., Tatevossian R.G., Dalton J.D., Tang B., et al. Whole-Genome sequencing identifies genetic alterations in pediatric low-grade gliomas. Nature Gene 2013; 45 (6): 602–12.

11. Forshew T., Tatevosslan R.G., Lawson A.R.J., Ma J., Neale G., Ogunkolade B.W., et al. Activation of the ERK/MAPK pathway: a signature genetic defect in posterior fossa pilocytic astrocytomas. J Pathol 2009; 218 (2): 172–81.

12. Dahiya S., Yu J., Kaul A., Leonard J.R., Gutmann D.H. Novel BRAF Alteration in a Sporadic Pilocytic Astrocytoma. Case Rep Med 2012; 418672.

13. Lin A., Rodriguez F.J., Karajannis M.A., Williams S.C., Legault G., Zagzag D., et al. BRAF alterations in primary glial and glioneuronal neoplasms of the central nervous system with identification of 2 novel KIAA1549:BRAF fusion variants. J Neuropathol Exp Neurol 2012; 71 (1): 66–72.

14. Jones D.T., Kocialkowski S., Liu L., Pearson D.M., Ichimura K., Collins V.P. Oncogenic RAF1 rearrangement and a novel BRAF mutation as alternatives to KIAA1549:BRAF fusion in activating the MAPK pathway in pilocytic astrocytoma. Oncogene 2009; 28 (20): 2119–23.

15. Helgager J., Lidov H.G., Mahadevan N.R., Kieran M.W., Ligon K.L., Alexandrescu S. A novel GIT2-BRAF fusion in pilocytic astrocytoma. Diagn Pathol 2017; 12 (1): 82–7.

16. Cin H., Meyer C., Herr R., Janzarik W.G., Lambert S., Jones D.T., et al. Oncogenic FAM131B-BRAF fusion resulting from 7q34 deletion comprises an alternative mechanism of MAPK pathway activation in pilocytic astrocytoma. Acta Neuropathol 2011; 121 (6): 763–74.

17. Hawkins C., Walker E., Mohamed N., Zhang C., Jacob K., Shirinian M., et al. BRAF-KIAA1549 fusion predicts better clinical outcome in pediatric low grade astrocytoma. Clin Cancer Res 2011;

18. Tateishi K., Nakamura T., Yamamoto T. Molecular genetics and therapeutic tagets of pediatric low-grade gliomas. Brain Tumor Pathol 2019 Apr; 36 (2): 74–83.

19. Rodriguez E.F., Scheithauer B.W., Giannini C., Rynearson A., Cen L., Hoesley B., et al. PI3K/AKT pathway alterations are associated with clinically aggressive and histologically anaplastic subsets of pilocytic astrocytoma. Acta Neuropathol 2011; 121 (3): 407–20.

20. Horbinski C., Nikiforova M.N., Hagenkord J.M., Hamilton R.L., Pollack I.F. Interplay among BRAF, p16, p53, and MIB1 in pediatric low-grade gliomas. Neuro Oncol 2012; 14 (6): 777–89.

21. Frazão L., do Carmo Martins M., Nunes V.M., Pimentel J., Faria C., Miguéns J., et al. BRAF V600E mutation and 9p21: CDKN2A/B and MTAP co-deletions – Markers in the clinical stratification of pediatric gliomas. BMC Cancer 2018; 18 (1): 1259.

22. López G.Y., Perry A., Harding B., Li M., Santi M. CDKN2A/B Loss Is Associated with Anaplastic Transformation in a Case of NTRK2 Fusion-positive Pilocytic Astrocytoma. Neuropathol Appl Neurobiol 2019; 45 (2): 174–8.

23. Schwartzentruber J., Korshunov A., Liu X.Y., Jones D.T., Pfaff E., Jacob K., et al. Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma. Nature 2012; 482: 226–31.

24. Wu G., Diaz A.K., Paugh B.S., Rankin S.L., Ju B., Li Y., et al. The genomic landscape of diffuse intrinsic pontine glioma and pediatric non-brainstem high-grade glioma. Nat Genet 2014; 46 (5): 444–50.

25. Stafford J.M., Lee C.H., Voigt P., Descostes N., Saldaña-Meyer R., Yu J.R., et al. Multiple modes of PRC2 inhibition elicit global chromatin alterations in H3K27M pediatric glioma. Sci Adv 2018; 4 (10): eaau5935.

26. Sturm D., Witt H., Hovestadt V., Khuong-Quang D.A., Jones D.T., Konermann C., et al. Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell 2012 Oct 16; 22 (4): 425–37.

27. Kleinschmidt-DeMasters B.K., Mulcahy Levy J.M. H3 K27M-mutant gliomas in adults vs. children share similar histological features and adverse prognosis. Clin Neuropathol 2018; 37 (2): 53–63.

28. Khuong-Quang D.A., Buczkowicz P., Rakopoulos P., Liu X.Y., Fontebasso A.M., Bouffet E., et al. K27M mutation in histone H3.3 defines clinically and biologically distinct subgroups of pediatric diffuse intrinsic pontine gliomas. Acta Neuropathol 2012; 124 (3): 439–47.

29. Solomon D., Wood M., Tihan T., Bollen A.W., Gupta N., Phillips J.J., et al. Diffuse Midline Gliomas with Histone H3-K27M Mutation: A Series of 47 Cases Assessing the Spectrum of Morphologic Variation and Associated Genetic Alterations. Brain Pathol 2015; 26 (5): 569–80.

30. Castel D., Philippe C., Calmon R., Le Dret L., Truffaux N., Boddaert N., et al. Histone H3F3A and HIST1H3B K27M mutations define two subgroups of diffuse intrinsic pontine gliomas with different prognosis and phenotypes. Acta Neuropathol 2015; 130 (6): 815–27.

31. Wang L., Li Z., Zhang M., Piao Y., Chen L., Liang H., et al. H3 K27M-mutant diffuse midline gliomas in different anatomical locations. Hum Pathol 2018; 78: 89–96.

32. National Comprehensive Cancer Network (NCCN). NCCN clinical practice guidelines in oncology: central nervous system cancers. Version 2.2018. Режим доступа: [электронный ресурс] http://www.nccn.org/professionals/physician_gls/PDF/cns.pdf. (дата обращения 21.12.2018).

33. Schreck K.C., Ranjan S., Skorupan N., Bettegowda C., Eberhart C.G., Ames H.M., et al. Incidence and clinicopathologic features of H3 K27M mutations in adults with radiographically-determined midline gliomas. J Neurooncol 2019; 143 (1): 87–93.

34. Ebrahimi A., Skardelly M., Schuhmann M.U., Ebinger M., Reuss D., Neumann M., et al. High frequency of H3 K27M mutations in adult midline gliomas. J Cancer Res Clin Oncol 2019; 145 (4): 839–50.

35. Meyronet D., Esteban-Mader M., Bonnet C., Joly M.O., Uro-Coste E., AmielBenouaich A., et al. Characteristics of H3 K27M-mutant gliomas in adults. Neuro Oncol 2017; 19 (8): 1127–34.

36. López G.Y., Oberheim Bush N.A., Phillips J.J., Bouffard J.P., Moshel Y.A., Jaeckle K., et al. Diffuse midline gliomas with subclonal H3F3A K27M mutation and mosaic H3.3 K27M mutant protein expression. Acta Neuropathol 2017; 134 (6): 961–3.

37. Pages M., Beccaria K., Boddaert N., Saffroy R., Besnard A., Castel D., et al. Co-occurrence of histone H3 K27M and BRAF V600E mutations in paediatric midline grade I ganglioglioma. Brain Pathol 2018; 28: 103–11.

38. Orillac C., Thomas C., Dastagirzada Y., Hidalgo E.T., Golfinos J.G., Zagzag D., et al. Pilocytic astrocytoma and glioneronal tumor with histone H3 K27M mutation. Acta Neuropathol Commun 2016; 4 (1): 84.

39. Hochart A., Escande F., Rocourt N., Grill J., Koubi-Pick V., Beaujot J., et al. Long survival in a child with a mutated K27M-H3.3 pilocytic astrocytoma. Ann Clin Transl Neurol 2015; 2 (4): 439–43.

40. El Ahmadieh T.Y., Plitt A., Kafka B., Aoun S.G., Raisanen J.M., Orr B., et al. H3 K27M Mutations in Thalamic Pilocytic Astrocytomas with Anaplasia. World Neurosurg 2019; 124: 87–92.

41. Morita S., Nitta M., Muragaki Y., Komori T., Masui K., Maruyama T., et al. Brainstem pilocytic astrocytoma with H3 K27M mutation: case report. J Neurosurg 2018; 129 (3): 593–7.

42. López G., Oberheim Bush N.A., Berger M.S., Perry A., Solomon D.A. Diffuse non-midline glioma with H3F3A K27M mutation: a prognostic and treatment dilemma. Acta Neuropathol Commun 2017; 5 (1): 38.

43. Yoshimoto K., Hatae R., Sangatsuda Y., Suzuki S.O., Hata N., Akagi Y., et al. Prevalence and clinicopathological features of H3.3 G34-mutant high-grade gliomas: a retrospective study of 411 consecutive glioma cases in a single institution. Brain Tumor Pathol 2017; 34 (3): 103–12.

44. Gianno F., Antonelli M., Ferretti E., Massimino M., Arcella A., Giangaspero F. Pediatric high-grade glioma: A heterogeneous group of neoplasms with different molecular drivers. Glioma 2018; 1: 117–24.

45. Korshunov A., Capper D., Reuss D., Schrimpf D., Ryzhova M., Hovestadt V., et al. Histologically distinct neuroepithelial tumors with histone 3 G34 mutation are molecularly similar and comprise a single nosologicentity. Acta Neuropathol 2016; 131 (1): 137–46.

46. Maus A., Peters G.J. Glutamate and alpha-ketoglutarate: key players in glioma metabolism. Amino Acids 2017; 49 (1): 21–32.

47. Turcan S., Rohle D., Goenka A., Walsh L.A., Fang F., Yilmaz E., et al. IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature 2012 Feb 15; 483 (7390): 479–83.

48. Pollack I.F., Hamilton R.L., Sobol R.W., Nikiforova M.N., Lyons-Weiler M.A., Laframboise W.A., et al. IDH1 mutations are common in malignant gliomas arising in adolescents: A report from the Children's Oncology Group. Child's Nervous System 2011; 27 (1):87–94.

49. U.S. Food and Drug Administration. Режим доступа [электронный ресурс]: https://www.fda.gov/drugs/fda-aрproves-larotrectinib-solid-tumors-ntrk-genefusions-0 (дата обращения 04.07.2019).

50. Laetsch T.W., DuBois S.G., Mascarenhas L., Turpin B., Federman N., Albert C.M., et al. Larotrectinib for paediatric solid tumours harbouring NTRK gene fusions: phase 1 results from a multicentre, open-label, phase 1/2 study. Lancet Oncol 2018 May; 19 (5): 705–14.


Рецензия

Для цитирования:


Зайцева М.А., Ясько Л.А., Папуша Л.И., Друй А.Е. Молекулярно-генетические характеристики глиом у детей. Вопросы гематологии/онкологии и иммунопатологии в педиатрии. 2019;18(4):109-117. https://doi.org/10.24287/1726-1708-2019-18-4-109-117

For citation:


Zaytseva M.A., Yasko L.A., Papusha L.I., Druy A.E. Molecular genetic features of pediatric gliomas. Pediatric Hematology/Oncology and Immunopathology. 2019;18(4):109-117. (In Russ.) https://doi.org/10.24287/1726-1708-2019-18-4-109-117

Просмотров: 1172


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1726-1708 (Print)
ISSN 2414-9314 (Online)