Preview

Вопросы гематологии/онкологии и иммунопатологии в педиатрии

Расширенный поиск

In silico assessment of plant L-asparaginase and estimating its allergenicity in comparison to bacteria asparaginase

https://doi.org/10.24287/1726-1708-2020-19-1-35-46

Полный текст:

Аннотация

L-asparaginase is widely distributed among microorganisms, animals and plants. L-asparaginase has been utilized as a drug in the treatment of lymphoid malignancies and plays a crucial role in asparagine metabolism in plant stress response mechanisms. Multiple sequence alignment of Neighbor–Joining phylogenetic tree was executed utilizing Mega 4.0. Two plants asparaginase were identified whose three dimensional structures compared well with two bacterial samples of L-asparaginase used in humans as a therapeutic drug. Prediction of antigen cites, B-cell epitope identification and prediction of epitopes by use of Cytotoxic T-lymphocyte was performed using various in silico server resources. The survey showed that between the 40 plants, 2 identified items of human, 12 bacteria and 6 algae of asparaginase genes, generally two main branches created that samples of green algae is in the neighborhood of to the bacterial samples. Interestingly the data showed that the two bacterial samples of L-asparaginase used in medicine, when compared to plant asparaginase genes, have less similarity to asparaginase genes of human, while the two human asparaginase genes are located perfectly between the plant groups with their sequence revealing high similarity with plant species. Although there was some allergen epitope found in plant asparaginase, these are different from the allergen epitopes of microbial asparaginase that are used as a drug in humans with no common sequence being found between them. This manuscript provides evidence suggesting the potential utilization of Phaseolus vulgaris asparaginase, which has less epitopes, better predicting tool scores and high similarity, in drug design as an enzymetherapy in leukemia and other cancers.

Об авторах

M. Yazdi
Shahid Chamran University of Ahvaz
Иран

Department of Genetic, Faculty of Science,

Ahvaz



M. Kolahi
Shahid Chamran University of Ahvaz
Иран

Department of Biology, Faculty of Science, 

Ahvaz



A. M. Foroghmand
Shahid Chamran University of Ahvaz
Иран

Department of Genetic, Faculty of Science, 

Ahvaz



M. R. Tabandeh
Shahid Chamran University of Ahvaz
Иран

Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, 

Ahvaz



Список литературы

1. Cachumba J.J.M., Antunes F.A.F., Peres G.F.D., Brumano L.P., Santos J.C.D., Da Silva S.S. Current applications and different approaches for microbial l-asparaginase production. Braz J Microbio 2016; 47: 77–85.

2. Ruma K., George T.K., Aswani P., Jisha M.S. Production and Optimization of Extra Cellular L-asparaginase by Fusarium solani Isolated from Withania sominifera. J Bio Active Pro Nat 2017; 7: 81–8.

3. Cho C., Lee H., Chung E., Kim K.M., Heo J.E., Kim J., et al. Molecular characterization of the soybean L-asparaginase gene induced by low temperature stress. Mol Cells 2007; 23: 280–6.

4. Lea P.J., Sodek L., Parry M.A.J., Shewry P.R., Halford N.G. Asparagine in plants. Ann Appl Biol 2007; 150: 1–26.

5. Canas R.A., Quillere I., Lea P.J., Hirel B. Analysis of amino acid metabolism in the ear of maize mutants deficient in two cytosolic glutamine synthetase isoenzymes highlights the importance of asparagine for nitrogen translocation within sink organs. Plant Biotechnol J 2010; 8: 966–78.

6. Vincze E., Reeves J.M., Lamping E., Farnden K.J., Reynolds P.H. Repression of the L-asparaginase gene during nodule development in Lupinus angustifolius. Plant Mol Biol 1994; 26: 303–11.

7. Fait A., Angelovici R., Less H., Ohad I., Urbanczyk-Wochniak E., Fernie A.R., Galili G. Arabidopsis seed development and germination is associated with temporally distinct metabolic switches. Plant physiology. J Plant Physiol 2006; 142: 839–54.

8. Credali A., García-Calderón M., Dam S., Perry J., Díaz-Quintana A., Parniske M., et al. The K+-dependent asparaginase, NSE1, is crucial for plant growth and seed production in Lotus japonicus. Plant Cell Physiol 2013; 54: 107–18.

9. UmaMaheswari T., Hemalatha T., Sankaranarayanan P., Puvanakrishnan R. Enzyme Therapy: Current Perspectives. Indian J Exp Biol 2016; 54: 7–16.

10. Panosyan E.H., Seibel N.L., Martin-Aragon S., Gaynon P.S., Avramis I.A., Sather H., et al. Asparaginase antibody and asparaginase activity in children with higher-risk acute lymphoblastic leukemia: Children's Cancer Group Study CCG1961. J Pediatr Hematol Oncol 2004; 26: 217–26.

11. Larson R.A., Fretzin M.H., Dodge R.K., Schiffer C.A. Hypersensitivity reactions to L-asparaginase do not impact on the remission duration of adults with acute lymphoblastic leukemia. Leukemia 1998; 12: 660–5.

12. Woo M.H., Hak L.J., Storm M.C., Sandlund J.T., Ribeiro R.C., Rivera G.K., et al. Hypersensitivity or development of antibodies to asparaginase does not impact treatment outcome of childhood acute lymphoblastic leukemia. J Clin Oncol 2000;18: 1525–32.

13. Avramis V.I., Sencer S., Periclou A.P., Sather H., Bostrom B.C., Cohen L.J., et al. A randomized comparison of native Escherichia coli asparaginase and polyethylene glycol conjugated asparaginase for treatment of children with newly diagnosed standard-risk acute lymphoblastic leukemia: a Children's Cancer Group study. Blood 2002; 99: 1986–94.

14. Batool T., Makky E.A., Jalal M., Yusoff M.M. A Comprehensive Review on L-Asparaginase and Its Applications. Appl Biochem Biotechnol 2016; 178: 900–23.

15. Hung Wei-Lun, Joon Hyuk Suh, Yu Wang. Chemistry and health effects of furanocoumarins in grapefruit. J Food Drug Anal 2016; 25 (1): 71–83.

16. Henriksen L.T., Harila‐Saari A., Ruud E., Abrahamsson J., Pruunsild K., Vaitkeviciene G., et al. PEG-asparaginase allergy in children with acute lymphoblastic leukemia in the NOPHO ALL2008 protocol. Pediatr Blood Cancer 2015; 62: 427–33.

17. Salzer W., Seibel N., Smith M. Erwinia asparaginase in pediatric acute lymphoblastic leukemia. Expert Opin Biol Ther 2012; 12: 1407–14.

18. Huby R.D.J., Dearman R.J., Kimber I. Why Are Some Proteins Allergens? Toxicol Sci 2000; 55: 235–46.

19. Lin C.H., Chen C.H., Lin Z.C., Fang J.Y. Recent advances in oral delivery of drugs and bioactive natural products using solid lipid nanoparticles as the carriers. J Food Drug Anal 2017; 25 (2): 219–34.

20. Kumar S., Stecher G., Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol Biol Evol 2016; 33: 1870–4.

21. Waterhouse A.M., Procter J.B., Martin D.M., Clamp M., Barton G.J. Jalview Version 2-a multiple sequence alignment editor and analysis workbench. Bioinformatics 2009; 25: 1189–91.

22. Doytchinova I.A., Flower D.R. VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinformatics 2007; 8: 4.

23. Saha S., Raghava G.P.S. AlgPred: prediction of allergenic proteins and mapping of IgE epitopes. Nucleic Acids Res 2006; 34: W202–W209.

24. Ivanciuc O., Mathura V., Midoro-Horiuti T., Braun W., Goldblum R.M., Schein C.H. Detecting potential IgE-reactive sites on food proteins using a sequence and structure database, SDAP-food. Journal of agricultural and food chemistry 2003; 51 (16): 4830–7.

25. Dimitrov I., Naneva L., Doytchinova I., Bangov I. AllergenFP: allergenicity prediction by descriptor fingerprints. Bioinformatics 2014; 30: 846–51.

26. Dimitrov I., Flower D.R., Doytchinova I. AllerTOP – a server for in silico prediction of allergens. BMC Bioinformatics 2013; 14: S4.

27. Saha S., Raghava G.P. Prediction of continuous B-cell epitopes in an antigen using recurrent neural network. Proteins 2006; 65: 40–8.

28. Ponomarenko J., Bui H.H., Li W., Fusseder N., Bourne P.E., Sette A., Peters B. ElliPro: a new structure-based tool for the prediction of antibody epitopes. BMC Bioinformatics 2008; 9: 514.

29. Aghaiypour K., Bahreini E., Jafari S. Bioinformatic Analysis of L-Asparaginase II from Citrobacter Freundii 1101, Erwinia Chrysanthemi DSM 4610, E. coli BL21 and Klebsiella Pneumoniae ATCC 10031. Int J Med Lab 2017; 4: 123–34.

30. Michalska K., Bujacz G., Jaskolski M. Crystal structure of plant asparaginase. J MOL BIOL 2006; 360: 105–16.

31. Bejger M., Imiolczyk B., Clavel D., Gilski M., Pajak A., Marsolais F., Jaskolski M. Na(+)/K(+) exchange switches the catalytic apparatus of potassium-dependent plant L-asparaginase. Acta Crystallogr D Biol Crystallogr 2014; 70: 1854–72.

32. Kersey P.J., Allen J.E., Allot A., Barba M., Boddu S., Bolt B.J., et al. Ensembl Genomes 2018: an integrated omics infrastructure for non-vertebrate species. Nucleic Acids Res 2017: gkx1011– gkx1011.

33. Vogel M., Lawson M., Sippl W., Conrad U., Roos W. Structure and Mechanism of Sanguinarine Reductase, an Enzyme of Alkaloid Detoxification. J Biol Chem 2010; 285: 18397–406.

34. Rosati F., Danza G., Guarna A., Cini N., Racchi M.L., Serio M. New Evidence of Similarity between Human and Plant Steroid Metabolism: 5α-Reductase Activity in Solanum malacoxylon. Endocrinology 2003; 144: 220–9.

35. Mari A. Importance of databases in experimental and clinical allergology. Int Arch Allergy Immunol 2005; 138: 88–96.

36. Schein C.H., Ivanciuc O., Braun W. Bioinformatics Approaches to Classifying Allergens and Predicting Cross-Reactivity. Immunol Allergy Clin North Am 2007; 27.

37. Verma A.K., Misra A., Subash S., Das M., Dwivedi P.D. Computational allergenicity prediction of transgenic proteins expressed in genetically modified crops. Immunopharmacol Immunotoxicol 2011; 33: 410–22.

38. Sircar G., Saha B., Bhattacharya S.G., Saha S. In silico prediction of allergenic proteins. Methods Mol Biol 2014; 1184: 375–88.

39. Sander I., Flagge A., Merget R., Halder T.M., Meyer H.E., Baur X. Identification of wheat flour allergens by means of 2-dimensional immunoblotting. J Allergy Clin Immunol Pract 2001; 107: 907–13.

40. Sudha V.T., Arora N., Gaur S.N., Pasha S., Singh B.P. Identification of a serine protease as a major allergen (Per a 10) of Periplaneta americana. Allergy 2008; 63: 768–76.

41. Li X., Yang H.W., Chen H., Wu J., Liu Y., Wei J.F. In silico prediction of T and B cell epitopes of Der f 25 in Dermatophagoides farinae. Int J Genomics 2014.

42. Mehla K., Ramana J. Surface proteome mining for identification of potential vaccine candidates against Campylobacter jejuni: an in silico approach. Funct Integr Genomics 2017; 17: 27–37.

43. Sollner J., Grohmann R., Rapberger R., Perco P., Lukas A., Mayer B. Analysis and prediction of protective continuous B-cell epitopes on pathogen proteins. Immunome Res 2008; 4: 1–17.

44. Zhao L., Wong L., Li J. Antibody-Specified B-Cell Epitope Prediction in Line with the Principle of Context-Awareness. IEEE/ ACM Trans Comput Biol Bioinform 2011; 8: 1483–94.

45. Van Regenmortel MHV. Immunoinformatics may lead to a reappraisal of the nature of B cell epitopes and of the feasibility of synthetic peptide vaccines. J Mol Recognit 2006; 19: 183–7.

46. Leinikki P., Lehtinen M., Hyöty H., Parkkonen P., Kantanen M.L., Hakulinen J. Synthetic peptides as diagnostic tools in virology. Adv Virus Res 42 1993; 42: 149–86.

47. Laver W.G., Air G.M., Webster R.G., SmithGill S.J. Epitopes on protein antigens: Misconceptions and realities. Cell 1990; 61: 553–6.

48. Van Regenmortel M.H.V. Mapping Epitope Structure and Activity: From One-Dimensional Prediction to Four-Dimensional Description of Antigenic Specificity. Methods 1996; 9: 465–72.

49. Rubinstein N.D., Mayrose I., Halperin D., Yekutieli D., Gershoni J.M., Pupko T. Computational characterization of B-cell epitopes. Mol Immunol 2008; 45: 3477–89.

50. Potocnakova L., Bhide M., Pulzova L.B. An Introduction to B-Cell Epitope Mapping and In Silico Epitope Prediction. J Immunol Res 2016; 26 (4): 479–90.

51. Mahdavi M., Mohabatkar H., Keyhanfar M., Dehkordi A.J., Rabbani M. Linear and conformational B cell epitope prediction of the HER 2 ECD-subdomain III by in silico methods. Asian Pac J Cancer Prev 2012; 13 (7) : 3053–9.

52. Bayrami V., Keyhanfar M., Mohabatkar H., Mahdavi M., Moreau V. In silico prediction of B cell epitopes of the extracellular domain of insulin-like growth factor-1 receptor. Mol Biol Res Commun 2016: 5 (4): 201–14.

53. Dall'Antonia F., Gieras A., Devanaboyina S.C., Valenta R., Keller W. Prediction of IgE-binding epitopes by means of allergen surface comparison and correlation to cross-reactivity. J Allergy Clin Immunol Pract 2011; 128: 872–9 e878.

54. Jimenez-Lopez J.C., Lima-Cabello E., Melser S., Foley R.C., Singh K.B., Juan D. A. Lupin Allergy: Uncovering Structural Features and Epitopes of β-conglutin Proteins in Lupinus Angustifolius L. with a Focus on Cross-allergenic Reactivity to Peanut and Other Legumes. In: Ortuño F, Rojas I, eds. Bioinformatics and Biomedical Engineering: Third International Conference, IWBBIO 2015, Granada, Spain, April 15–17, 2015, Proceedings, Part I. Cham: Springer International Publishing, 2015: 96–107.

55. Kundu P., Biswas R., Mukherjee S., Reinhard L., Dutta A., Mueller-Dieckmann J., et al. Structure-based Epitope Mapping of Mycobacterium tuberculosis Secretary Antigen MTC28. J Biol Chem 2016; 291: 13943–54.

56. Mirza M.U., Rafique S., Ali A., Munir M., Ikram N., Manan A., et al. Towards peptide vaccines against Zika virus: Immunoinformatics combined with molecular dynamics simulations to predict antigenic epitopes of Zika viral proteins. Sci Rep 6 (2016): 37313.

57. Larsen M.V., Lundegaard C., Lamberth K., Buus S., Lund O., Nielsen M. Largescale validation of methods for cytotoxic T-lymphocyte epitope prediction. BMC Bioinformatics 2007; 8: 424.

58. Larsen M.V., Lundegaard C., Lamberth K., Buus S., Brunak S., Lund O., Nielsen M. An integrative approach to CTL epitope prediction: a combined algorithm integrating MHC class I binding, TAP transport efficiency, and proteasomal cleavage predictions. Eur J Immunol 2005; 35: 2295–303.


Для цитирования:


Yazdi M., Kolahi M., Foroghmand A.M., Tabandeh M.R. In silico assessment of plant L-asparaginase and estimating its allergenicity in comparison to bacteria asparaginase. Вопросы гематологии/онкологии и иммунопатологии в педиатрии. 2020;19(1):35-46. https://doi.org/10.24287/1726-1708-2020-19-1-35-46

For citation:


Yazdi M., Kolahi M., Foroghmand A.M., Tabandeh M.R. In silico assessment of plant L-asparaginase and estimating its allergenicity in comparison to bacteria asparaginase. Pediatric Hematology/Oncology and Immunopathology. 2020;19(1):35-46. https://doi.org/10.24287/1726-1708-2020-19-1-35-46

Просмотров: 530


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1726-1708 (Print)
ISSN 2414-9314 (Online)