Preview

Вопросы гематологии/онкологии и иммунопатологии в педиатрии

Расширенный поиск

Молекулярные механизмы инициирования и модуляции ауто-иммунного процесса микроорганизмами

Аннотация

Инфекционные агенты являются наиболее известными экологическими факторами, провоцирующими и модулирующими аутоиммунные заболевания. Молекулярные механизмы, лежащие в основе этого явления, включают молекулярную мимикрию, распространение эпитопов и обеспечение доступности криптических эпитопов аутоантигенов, активацию в присутствии свидетеля, эффект адъюванта, поликлональную активацию В-лимфоцитов и Т-лимфоцитов бактериальными суперантигенами. Непатогенные микроорганизмы и инфекционные агенты могут также защищать людей от аутоиммунных заболеваний посредством активации регуляторных Т-лимфоцитов и смещения равновесия между Т-лимфоцитами-хелперами классов 1 и 2 в пользу последних.

Об авторах

Елена Павловна Киселева
ГНУ Институт биоорганической химии НАН Беларуси
Беларусь
Ведущий научный сотрудник лаборатории химии белковых гормонов, кандидат химических наук.


Константин Игоревич Михайлопуло
ГНУ Институт биоорганической химии НАН Беларуси
Беларусь
Старший научный сотрудник лаборатории химии белковых гормонов


Галина Ивановна Новик
ГНУ Институт микробиологии НАН Беларуси
Беларусь

ведущий научный сотрудник лаборатории коллекции микроорганизмов, кандидат биологических наук



Николай Федорович Сорока
УО Белорусский государственный медицинский университет
Беларусь

профессор 2-й кафедры внутренних болезней УО Белорусский государственный медицинский университет, доктор медицинских наук, высшая квалификационная категория



Список литературы

1. Kivity S., Agmon-Levin N., Blank M., Shoenfeld Y. Infections and autoimmunity – friends or foes? Trends in Immunology 2009 Aug; 30(8): 409–14.

2. Ercolini A.M., Miller S.D. The role of infections in autoimmune dis-ease. Clin Exp Immunol 2009 Jan; 155(1): 1–15.

3. Ceccarelli F., Agmon-Levin N., Perricone C. Genetic factors of autoimmune diseases. J Immunol Res 2017 Nov 5; 2017: 2789242.

4. Mariani S.M. Genes and autoimmune diseases - a complex inheritance. Med Gen Med 2004 Dec 8; 6(4): 18.

5. Ramos P.S, Shedlock A.M, Langefeld C.D. Genetics of autoim-mune diseases: insights from population genetics. Journal of Human Genetics 2015 Nov; 60(11): 657–64.

6. Taneja V., Mangalam A., David C.S. Chapter 27. Genetic predis-position to autoimmune diseases conferred by the major histocompatibility complex: utility of animal models. In: Rose N., Mackay I., editors. The Autoimmune Diseases, 5th edition. San Diego, CA: Academic Press/Elsevier 2014. p. 365-80. Available from: https://doi.org/10.1016/C2009-0-64586-4

7. Wanstrat A., Wakeland E. The genetics of complex autoimmune diseases: non-MHC susceptibility genes. Nature Immunology 2001 Sept 01; 2(9): 802–9.

8. Oldstone M.B. Molecular mimicry, microbial infection, and autoimmune disease: evolution of the concept. Current Topics in Microbiology and Immunology 2005; 296: 1–17.

9. Fujinami R.S., Oldstone M.B. Amino acid homology between the encephalitogenic site of myelin basic protein and virus: mechanism for autoimmunity. Science 1985; 230: 1043–1045.

10. Trost B., Lucchese G., Stufano A., Bickis M., Kusalik A., Kanduc D. No human protein is exempt from bacterial motifs, not even one. Self/Nonself 2010; 1(4): 328–34.

11. Hebbes T.R., Turner C. H., Thorne A. W., Crane-Robinson C. A "minimal epitope" anti-protein antibody that recognizes a single modified amino acid. Mol Immunol 1989 Sep; 26(9):865-73.

12. Forsström B., Bisławska Axnäs B., Stengele K.-P., Bühler J., Albert T. J., Richmond T. A., Hu F. J., Nilsson P., Hudson E. P., Rockberg J., Uhlen M.. Proteome-wide epitope mapping of antibodies using ultra-dense peptide arrays. Mol Cell Proteomics 2014; 13: 1585–1597.

13. Peng H. P., Lee K. H., Jian J. W., Yang A. S. Origins of specificity and affinity in antibody-protein interactions. Proc Natl Acad Sci USA 2014; 111: E2656–2665.

14. Pahari S., Chatterjee D., Negi S., Kaur J., Singh B., Agrewala J.N. Morbid sequences suggest molecular mimicry between microbial peptides and self-antigens: a possibility of inciting autoimmunity. Front Microbiol 2017 Oct 9; 8: 1938.

15. Sanchez-Trincado J.L., Gomez-Perosanz M., Reche P.A. Funda-mentals and methods for T- and B-cell epitope prediction. Journal of Immunology Research 2017; 2017: Article ID 2680160, 14 pages.

16. Lafuente E.M., Reche P.A. Prediction of MHC-peptide binding: a systematic and comprehensive overview. Current Pharmaceutical De-sign 2009; 15(28): 3209–20.

17. Jensen P.E. Recent advances in antigen processing and presentation. Nature Immunology 2007; 8(10): 1041–48.

18. Wilson D.B., Wilson D.H., Schroder K., Pinilla C., Blondelle S., Houghten R.A., Garcia K.C. Specificity and degeneracy of T cells. Mol Immunol. 2004 Feb; 40(14-15):1047-55.

19. Wucherpfennig K.W. T cell receptor crossreactivity as a general property of T cell recognition. Mol Immunol 2004 Feb; 40(14-15): 1009-17.

20. Petrova G., Ferrante A., Gorski J. Cross-reactivity of T cells and its role in the immune system. Crit Rev Immunol 2012; 32(4): 349-72.

21. Bentzen A.K., Hadrup S.R. T-cell-receptor cross-recognition and strategies to select safe T-cell receptors for clinical translation. Immuno-Oncology Technology, 2019 Sept; 2: 1-10.

22. Mason D. A very high level of crossreactivity is an essential feature of the T-cell receptor. Immunol Today 1998; 19: 395–404.

23. Münz C., Lünemman J.D., Getts M.T., Miller S.D. Antiviral immune responses: triggers of or triggered by autoimmunity? Nat Rev Immunol 2009 Apr; 9(4): 246–58.

24. Nino-Vasquez J., Allicotti G., Borras E., Wilson D. B., Valmori D., Simon R., Martin R., Pinilla C.. A powerful combination: the use of positional scanning libraries and biometrical analysis to identify cross-reactive T cell epitopes. Mol Immunol 2004 Feb; 40(14-15): 1063-74.

25. Dhanda S. K., Gupta S., Vir P., Raghava G.P. Prediction of IL4 inducing peptides. Clin Dev Immunol 2013; 263952.

26. Dhanda S.K., Vir P., Raghava G.P. Designing of interferon-gamma inducing MHC class-II binders. Biol Direct 2013; 8:30.

27. Shahrizaila N., Yuki N. Guillain-Barré syndrome animal model: the first proof of molecular mimicry in human autoimmune disorder. Journal of Biomedicine and Biotechnology 2011 Dec 15; 2011: Article ID 829129, 5 pages.

28. Rees J.H., Soudain S.E., Gregson N.A., Hughes R.A.C. Campylobacter jejuni infection and Guillain-Barré syndrome. The New England Journal of Medicine 1995; 333(21): 1374–79.

29. 29Schwimmbeck P.L, Dyrberg T., Drachman D., Oldstone M.B.A. Molecular mimicry and myasthenia gravis: an autoantigenic site of the acetylcholine receptor α -subunit that has biologic activity and reacts immunochemically with herpes simplex virus. J Clin Invest 1989 Oct; 84(4): 1174–80.

30. 30Bachmaier K, Neu N, de la Maza LM, Pal S, Hessel A, Penninger JM. Chlamydia infections and heart disease linked through antigenic mimicry. Science 1999 Feb 26; 283(5406): 1335–9.

31. 31Gangaplara A, Massilamany C, Brown DM, Delhon G, Pattnaik AK, Chapman N, Rose N, Steffen D, Reddy J. Coxsackievirus B3 infection leads to the generation of cardiac myosin heavy chain-alpha-reactive CD4 T cells in A/J mice. Clinical Immunology. 2012 Sept; 144(3): 237–49.

32. Regner M., Lambert P.H. Autoimmunity through infection or im-munization? Nat Immunol 2001; 2(3): 185–8.

33. Filippi C.M., von Herrathi M.G. Viral trigger for type I diabetes. Pros and Cons Diabetes 2008 Nov; 57(11): 2863–2871.

34. Honeyman M.C., Stone N.L., Falk B.A., Nepom G., Harrison L.C. Evidence for molecular mimicry between human T cell epitopes in rotavirus and pancreatic islet autoantigens. J Immunol. 2010 Feb 15; 184(4): 2204–10.

35. Roep B.O., Hiemstra H.S., Schloot N.C., de Vries R.R.P, Chaudhuri A., Behan P.O., Drijfhout J.W. Molecular mimicry in type I diabetes: immune cross-reactivity between islet autoantigen and human cytomegalovirus but not coxsackie virus. Ann N Y Acad Sci 2002 Apr; 958: 163-5.

36. Fairweather D., Frisancho-Kiss S., Rose N.R. Viruses as adjuvants for autoimmunity: evidence from coxsackievirus-induced myocarditis. Rev Med Virol 2005 Jan-Feb; 15(1): 17-27.

37. Getts M.T., Miller S.D. 99th Dahlem conference on infection, in-flammation and chronic inflammatory disorders: triggering of autoimmune diseases by infections. Clin Exp Immunol 2010 Apr; 160(1): 15–21.

38. Root-Bernstein R. Rethinking molecular mimicry in rheumatic heart disease and autoimmune myocarditis: laminin, collagen IV, CAR, and B1AR as initial targets of disease. Front Pediatr 2014 Aug 19; 2: 85.

39. Bachmaier K., Neu N., de la Maza L.M., Pal S., Hessel A., Penninger J.M. Chlamydia infections and heart disease linked through antigenic mimicry. Science 1999 Feb 26; 283(5406): 1335-9.

40. Ang C.W., Jacobs B.C., Laman J.D. The Guillain-Barre syndrome: a true case of molecular mimicry. Trends Immunol 2004 Feb; 25(2): 61-6.

41. Rose N.R. The adjuvant effect in infection and autoimmunity. Clin Rev Allergy Immunol 2008 Jun; 34(3): 279-82.

42. Pradhan V.D., Das S., Surve P., Ghosh K. Toll-like receptors in autoimmunity with special reference to systemic lupus erythematosus. Indian J Hum Genet 2012 May; 18(2): 155–160.

43. Cunha-Neto E, Bilate AM, Hyland KV, Fonseca SG, Kalil J, Engman DM. Induction of cardiac autoimmunity in Chagas heart disease: a case for molecular mimicry. Autoimmunity 2006 Feb; 39(1): 41-54.

44. Montes C.L., Acosta – Rodríguez E.V., Merino M.C., Bermejo D.A., Gruppi A. Polyclonal B cell activation in infections: infectious agents’ devilry or defense mechanism of the host? J Leukoc Biol 2007 Nov; 82(5): 1027–32.

45. Bogner U., Wall J. R., Schleusener, H. Cellular and antibody mediated cytotoxicity in autoimmune thyroid disease. Acta Endocrinologica 1987; 116(1 Suppl), S133–S138.

46. Russell J.H., Ley T.J. Lymphocyte-mediated cytotoxicity. Annual Review of Immunology 2002 Febr; 20(6): 323-70.

47. Raúl V., Romána G., Murrayb J.C., Weiner L.M. Chapter 1. Anti-body-dependent cellular cytotoxicity (ADCC). In: Ackerman M.E., Nimmerjahn F., editors. Antibody Fc. Linking adaptive and innate immunity. San Diego, CA, Elsevier/Academic Press 2014. p. 1-27. Available from: https://doi.org/10.1016/C2011-0-07091-6

48. Varela J.C., Tomlinson S. Complement: an overview for the clini-cian. Hematol Oncol Clin North Am 2015 Jun; 29(3): 409-27.

49. Liblau R.S., Wong F.S., Mars L.T., Santamaria P. Autoreactive CD8 T cells in organ-specific autoimmunity: emerging targets for thera-peutic intervention. Immunity 2002 July; 17(1): 1-6.

50. Ma W-T., Gao F., Gu K., Chen D-K. The role of monocytes and macrophages in autoimmune diseases: a comprehensive review. Front Immunol 2019 May 24; 10: 1140.

51. Schleinitz N., Vély F., Harlé J.-R., Vivier E. Natural killer cells in human autoimmune diseases. Immunology. 2010 Dec; 131(4): 451–458.

52. Lehmann P.V., Targoni O.S., Forsthuber T.G. Shifting T-cell activation thresholds in autoimmunity and determinant spreading. Immunol Rev 1998 Aug; 164(1): 53–61.

53. Cunningham M.W. Rheumatic fever, autoimmunity and molecular mimicry: the streptococcal connection. Int Rev Immunol. 2014 Jul-Aug; 33(4): 314–29.

54. Cohen I.R., Young D.B. Autoimmunity, microbial immunity and the immunological homunculus. Immunol Today 1991 Apr; 12(4): 105–10.

55. Fujinami R.S., von Herrath M.G., Christen U., Whitton J.L. Molecular mimicry, bystander activation, or viral persistence: infections and autoimmune disease. Clinical microbiology reviews 2006 Jan; 19(1): 80–94.

56. Pane J.A., Coulson B.S. Lessons from the mouse: potential contribution of bystander lymphocyte activation by viruses to human type 1 diabetes. Diabetologia 2015 Jun; 58(6): 1149 –59.

57. Lee H-G., Lee J-U., Kim D-H., Lim S., Kang I., Choi J-M. Pathogenic function of bystander-activated memory-like CD4+ T cells in autoimmune encephalomyelitis. Nature Communications 2019 Febr 12; 10: Article number 709.

58. Nogai A., Siffrin V., Bonhagen K., Pfueller C.F., Hohnstein T., Volkmer-Engert R., Brück W., Stadelmann C., Kamradt T. Lipopolysac-charide injection induces relapses of experimental autoimmune encephalomyelitis in nontransgenic mice via bystander activation of autoreactive CD4 cells. The Journal of Immunology 2005 Jul 15; 175(2): 959–66.

59. Kawai T., Akira S. The roles of TLRs, RLRs and NLRs in pathogen recognition. Int Immunol 2009 Apr; 21(4): 317–37.

60. El-Zayat S.R., Sibaii H., Mannaa F.A. Toll-like receptors activation, signaling, and targeting: an overview. Bull Natl Res Cent 2019 Dec 12; 43(1): 187.

61. Chiffoleau E. C-type lectin-like receptors as emerging orchestrators of sterile inflammation represent potential therapeutic targets. Front Immunol 2018 Feb 15; 9: 227.

62. Kim Y.K., Shin J.S., Nahm M.H. NOD-like receptors in infection, immunity, and diseases. Yonsei Med J 2016 Jan; 57(1): 5-14.

63. Loo Y-M., Gale M. Immune signaling by RIG-I-like receptors. Im-munity 2011 May 27; 34(5): 680–692.

64. Lang K.S., Recher M., Junt T., Navarini A.A., Harris N.L., Freigang S. et al. Toll-like receptor engagement covers T-cell autoreactivity into overt autoimmune disease. Nat Med 2005 Febr; 11(2): 138-45.

65. Haas A., Zimmermann K., Oxenius A. Antigen-dependent and -independent mechanisms of T and B cell hyperactivation during chronic HIV-1 infection. Journal of virology 2011 Dec; 85(23): 12102–113.

66. Shoenfeld Y., Agmon-Levin N. ‘ASIA’–Autoimmune/inflammatory syndrome induced by adjuvants. J Autoimmun. 2011; 36: 4–8.

67. Hawkes D., Benhamu J., Sidwell T., Miles R., Dunlop R.A. Revisiting adverse reactions to vaccines: a critical appraisal of autoimmune syndrome induced by adjuvants (ASIA). J Autoimmun 2015 May; 59: 77–84.

68. Soriano A., Nesher G., Shoenfeld Y. Predicting post-vaccination autoimmunity: Who might be at risk? Pharmacol Res 2015 Feb; 92: 18–22.

69. van der Laan J.W., Gould S., Tanir J.Y. Safety of vaccine adju-vants: focus on autoimmunity. Vaccine 2015 Mar 24; 33(11): 1507–14.

70. Domiati-Saad., R., Attrep J.F., Brezinschek H.P., Cherrie A.H., Karp D.R., Lipsky P.E. Staphylococcal enterotoxin D functions as a human B-cell superantigen by rescuing VH4-expressing B cells from apoptosis. J Immunol. 1996 May 15; 156(10): 3608-20.

71. Domiati-Saad R., Lipsky P.E. Staphylococcal enterotoxin A induces survival of VH3-expressing human B cells by binding to the VH region with low affinity. J Immunol 1998 Aug 1; 161(3): 1257-1266.

72. Viau M., Longo N.S., Lipsky P.E., Björck L., Zouali M. Specific in vivo deletion of B-cell subpopulations expressing human immunoglobulins by the B-cell superantigen protein L. Infect Immun 2004 Jun; 72(6): 3515–23.

73. Karray S., Juompan L., Maroun R. C., Isenberg D., Silverman G. J., Zouali M. Structural basis of the gp120 superantigen-binding site on human immunoglobulins. 1998 Dec 15; 161(12): 6681-8.

74. Wikström M, Sjöbring U, Drakenberg T, Forsén S, Björck L. Map-ping of the immunoglobulin light chain-binding site of protein L. J Mol Biol 1995 Jul 7; 250(2): 128-33.

75. Nilson B.H., Solomon A., Björck L., Akerström B. Protein L from Peptostreptococcus Magnus binds to the kappa light chain variable domain. 1992 Feb 5; 267(4): 2234-9.

76. Schiffenbauer J. Superantigens and their role in autoimmune dis-orders. Archivum Immunologiae et Therapiae Experimentalis 1999; 47(1): 17–24.

77. Rott, O., Charreire, J., Cash, E. Influenza A virus hemagglutinin is a B cell-superstimulatory lectin. Med. Microbiol. Immunol 1996 Feb; 184(4): 185–93.

78. Ram M. The putative protective role of hepatitis B virus (HBV) in-fection from autoimmune disorders. Autoimmunity 2008 Sep; 7(8): 621–25.

79. Watanabe K., Kumada H., Yoshimura F., Umemoto T. The induc-tion of polyclonal B-cell activation and interleukin-1 production by the 75-kDa cell surface protein from Porphyromonas gingivalis in mice. Arch Oral Biol 1996 Aug-Sep; 41(8-9): 725–31.

80. Murphy K., Travers P., Walport M. Сhapter 5. Antigen presentation to T-lymphocytes. In: Murphy K., Travers P., Walport M., editors. Janeway's Immunobiology. 7th edition. New York. USA: Garland Science 2008. p. 206—7. Available from: https://www.ncbi.nlm.nih.gov/books/NBK10766/

81. Cordeiro-Da-Silva A., Borges M.C., Guilvard E., Ouaissi A. Dual role of the Leishmania major ribosomal protein S3a homologue in regulation of T- and B-cell activation. Infect Immun 2001 Nov; 69(11): 6588 –96.

82. Chung N.P.Y., Matthews K., Klasse P.J., Sanders R.W., Moore J.P. HIV-1 gp120 impairs the induction of B cell responses by TLR9-activated plasmacytoid dendritic cells J Immunol 2012 Dec 1; 189(11): 5257–65.

83. Dörner T., Giesecke C., Lipsky P.E. Mechanisms of B cell autoimmunity in SLE. Arthritis Research and Therapy 2011 Oct 27; 13(5): 243, 12 p.

84. Proft T., Fraser J.D. Bacterial superantigens. Clin Exp Immunol 2003 Sep; 133(3): 299–306.

85. Schiffenbauer J. Superantigens and their role in autoimmune dis-orders. Arch Immunol Ther Ex 1999; 47(1): 17–24.

86. Strachan, D. Family size, infection and atopy: The first decade of the "hygiene hypothesis". Thorax 2000 Aug; 55(Suppl 1): 2–5.

87. Rook G.A.W. Microbes, immunoregulation, and the gut. Gut 2005 Mar; 54(3): 317–20.

88. Kiseleva E.P., Novik G.I. Probiotics as immunomodulators: sub-stances, mechanisms and therapeutic benefits. In: Mendez-Vilas A., editor. Microbial pathogens and strategies for combating them: science, technology and education. Badajoz, Spain: Formatex Research Center 2013. 3: 1864–76. https://api.semanticscholar.org/CorpusID:42172455


Дополнительные файлы

1. Скан сопроводительного письма
Тема
Тип Прочее
Скачать (2MB)    
Метаданные
2. Виза научного руководителя (скан)
Тема
Тип Прочее
Скачать (2MB)    
Метаданные
3. Подписи авторов (скан)
Тема
Тип Прочее
Скачать (2MB)    
Метаданные

Рецензия

Для цитирования:


Киселева Е.П., Михайлопуло К.И., Новик Г.И., Сорока Н.Ф. Молекулярные механизмы инициирования и модуляции ауто-иммунного процесса микроорганизмами. Вопросы гематологии/онкологии и иммунопатологии в педиатрии. 2021;20(1).

Просмотров: 79


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1726-1708 (Print)
ISSN 2414-9314 (Online)