Preview

Вопросы гематологии/онкологии и иммунопатологии в педиатрии

Расширенный поиск

Применение проточных систем в лабораторной диагностике для интегральной оценки системы гемостаза

https://doi.org/10.24287/1726-1708-2018-17-1-117-132

Полный текст:

Аннотация

Одна из важнейших задач лабораторной диагностики нарушений работы в системе гемостаза - оценка риска тромбозов и кровотечений. Для этой цели плохо подходят узкоспециализированные тесты, направленные на выявление патологий отдельных звеньев или отдельных маркеров: дефицитов антигемофильных факторов - VIII, IX, XI, уровня D-димеров, тромбоцитарные тесты на активацию АДФ серотонином и агрегацию в присутствии ацетилсалициловой кислоты. Перспективным подходом считаются интегральные тесты, имитирующие процессы гемостаза in vivo, - тромбоэластография, тромбодинамика, генерация тромбина. При их создании ставится задача оценки риска тромбоза или кровотечения при сочетании дефектов гемостаза различной природы, а также скрининг и мониторинг лекарственной терапии. Один из подходов при создании интегральных тестов - применение проточных систем - микрокамер, в которых над активатором гемостаза формируется поток плазмы или цельной крови, а рост тромба регистрируется оптически. Существуют коммерчески доступные образцы таких устройств, накапливается опыт их применения в клинике, однако каких-либо единых стандартов и клинических рекомендаций в этой области пока нет. В данном обзоре рассмотрены примеры применения проточных камер для диагностики, описаны существующие проблемы при их использовании и те возможности, которые они могут предоставить клиницисту.

Об авторах

О.Е. Ушакова
ФГАОУ ВО «Первый Московский государственный медицинский университет им. И.М. Сеченова» Минздрава России, ФГБУН «Центр теоретических проблем физико-химической фармакологии» РАН, ФГБУ «Национальный медицинский исследовательский центр детской гематологии, онкологии и иммунологии им. Дмитрия Рогачева» Минздрава России
Россия


Д.Ю. Нечипуренко
ФГБУН «Центр теоретических проблем физико-химической фармакологии» РАН, ФГБУ «Национальный медицинский исследовательский центр детской гематологии, онкологии и иммунологии им. Дмитрия Рогачева» Минздрава России, ФГБОУ ВО «Московский государственный университет им. М.В. Ломоносова»
Россия


А. А. Бутылин
ФГБУ «Национальный медицинский исследовательский центр детской гематологии, онкологии и иммунологии им. Дмитрия Рогачева» Минздрава России, ФГБОУ ВО «Московский государственный университет им. М.В. Ломоносова»
Россия


М.А. Пантелеев
ФГБУН «Центр теоретических проблем физико-химической фармакологии» РАН, ФГБУ «Национальный медицинский исследовательский центр детской гематологии, онкологии и иммунологии им. Дмитрия Рогачева» Минздрава России, ФГБОУ ВО «Московский государственный университет им. М.В. Ломоносова», ФГАОУ ВО «Московский физико-технический институт (государственный университет)»
Россия


Список литературы

1. Полохов Д.М., Пантелеев М.А. Сов-ременные подходы в лабораторной диагностике тромбоцитарного гемостаза. Hematology. Transfusiology. Eastern Europe 2016; 2: 270-90.

2. Shen F., Kastrup C.J., Liu Y., Ismagilov R.F. Threshold response of initiation of blood coagulation by tissue factor in patterned microfluidic capillaries is controlled by shear rate. Arterioscler Thromb Vasc Biol 2008; 28: 2035-41.

3. Andree H.A., Contino P.B., Repke D., Gentry R., Nemerson Y. Transport rate limited catalysis on macroscopic surfaces: the activation of factor X in a continuous flow enzyme reactor. Biochemistry 1994; 33: 4368-74.

4. Katoh S., Matsubara I., Sada E. Effect of shear rate on activation rate of factor X. Ann Biomed Eng 1978; 6: 60-7.

5. Ilkan Z., Wright J.R., Goodall A.H., Gibbins J.M., Jones C.I., MahautSmith M.P. Evidence for shear-mediated Ca2+ entry through mechanosensitive cation channels in human platelets and a megakaryocytic cell line. J Biol Chem 2017; 292: 9204-17.

6. Ruggeri Z.M., Orje J.N., Habermann R., Federici A.B., Reininger A.J. Activation-independent platelet adhesion and aggregation under elevated shear stress. Blood 2006; 108: 1903-10.

7. Jilma B. Platelet function analyzer (PFA-100): a tool to quantify congenital or acquired platelet dysfunction. J Lab Clin Med 2001; 138: 152-63.

8. Ito M., Kaikita K., Sueta D., Ishii M., Oimatsu Y., Arima Y., Iwashita S., et al. Total Thrombus-Formation Ana-lysis System (T-TAS) Can Predict Periprocedural Bleeding Events in Patients Undergoing Catheter Ablation for Atrial Fibrillation. J Am Heart Assoc 2016; 5.

9. Ruggeri Z.M. Structure of von Willebrand factor and its function in platelet adhesion and thrombus formation. Best Pract Res Clin Haematol 2001; 14: 257-79.

10. Qiu Y., Ciciliano J., Myers D.R., Tran R., Lam W.A. Platelets and physics: How platelets "feel" and respond to their mechanical microenvironment. Blood Rev 2015; 29: 377-86.

11. Siedlecki C.A., Lestini B.J., Kottke-Marchant K.K., Eppell S.J., Wilson D.L., Marchant R.E. Shear-dependent changes in the three-dimensional structure of human von Willebrand factor. Blood 1996; 88: 2939-50.

12. Stockschlaeder M., Schneppenheim R., Budde U. Update on von Willebrand factor multimers: focus on high-molecular-weight multimers and their role in hemostasis. Blood Coagul Fibrinolysis 2014; 25: 206-16.

13. Jackson S.P. The growing complexity of platelet aggregation. Blood 2007; 109: 5087-95.

14. Gale A.J. Continuing education course #2: current understanding of hemostasis. Toxicol Pathol 2011; 39: 273-80.

15. Kauskot A., Hoylaerts M.F. Platelet receptors. Handb Exp Pharmacol 2012; 23-57.

16. Thon J.N., Italiano J.E. Platelets: produ-ction, morphology and ultrastructure. Handb Exp Pharmacol 2012; 3-22.

17. Пантелеев М.А., Атауллаханов Ф.И. Свер-тывание крови: биохимические основы. Клиническаяонкогематология 2008; 1: 50-62.

18. Vadivel K., Bajaj S.P. Structural biology of factor VIIa/tissue factor initiated coagulation. Front Biosci (Landmark Ed) 2012; 17: 2476-94.

19. Renne T., Schmaier A.H., Nickel K.F., Blomback M., Maas C. In vivo roles of factor XII. Blood 2012; 120: 4296-303.

20. Пантелеев М.А., Атауллаханов Ф.И. Свертывание крови: методы исследования и механизмы регуляции (часть 2). Клиническая онкогематология 2008; 1: 174-81.

21. Stalker T.J., Newman D.K., Ma P., Wannemacher K.M., Brass L.F. Platelet signaling. Handb Exp Pharmacol 2012;59-85.

22. Lopez J.A., Andrews R.K., Afshar-Kharghan V., Berndt M.C. Bernard-Soulier syndrome. Blood 1998; 91: 4397-418.

23. Воробьёв А.И. Руководство по гематологии в 3-х тт. - М.: Изд. "Нью-диамед" 2002.

24. Lipets E.A.F. Global assays of hemostasis in the diagnostics of hypercoagulation and evaluation of thrombosis risk. Thrombosis journal 2015; 13: 15.

25. Lawson C.A., Yan S.D., Yan S.F., Liao H., Zhou Y.S., Sobel J., Kisiel W., et al. Monocytes and tissue factor promote thrombosis in a murine model of oxygen deprivation. J Clin Invest 1997; 99: 1729-38.

26. de Groot P.G., Urbanus R.T., Roest M. Platelet interaction with the vessel wall. Handb Exp Pharmacol 2012; 87-110.

27. Paniccia R., Priora R., Liotta A.A., Abbate R. Platelet function tests: a com-parative review. Vasc Health Risk Manag 2015; 11: 133-48.

28. Lippi G., Favaloro E.J., Salvagno G.L., Franchini M. Laboratory assessment and perioperative management of patients on antiplatelet therapy: from the bench to the bedside. Clin Chim Acta 2009; 405: 8-16.

29. Haas T., Spielmann N., Mauch J., Madj-dpour C., Speer O., Schmugge M., Weiss M. Comparison of throm-boelastometry (ROTEM(R)) with stan-dard plasmatic coagulation testing in paediatric surgery. Br J Anaesth 2012; 108: 36-41.

30. Cuker A., Siegal D.M., Crowther M.A., Garcia D.A. Laboratory measurement of the anticoagulant activity of the non-vitamin K oral anticoagulants. J Am Coll Cardiol 2014; 64: 1128-39.

31. Липец Е.Н., Атауллаханов Ф.И., Панте-леев М.А. Интегральные лабораторные тесты гемостаза в диагностике гиперкоагуляции и оценке риска тромбоза. Онкогематология 2015; 10: 73-91.

32. Lance M.D. A general review of major global coagulation assays: thrombelastography, thrombin generation test and clot waveform analysis. Thromb J 2015; 13: 1.

33. Kyrle P.A., Mannhalter C., Beguin S., Stumpflen A., Hirschl M., Weltermann A., et al. Clinical studies and thrombin generation in patients homozygous or heterozygous for the G20210A mutation in the prothrombin gene. Arterioscler Thromb Vasc Biol 1998; 18: 1287-91.

34. Dashkevich N.M., Ovanesov M.V., Balan-dina A.N., Karamzin S.S., Shestakov P.I., Soshitova N.P., Tokarev A.A., et al. Thrombin activity propagates in space during blood coagulation as an excitation wave. Biophys J 2012; 103: 2233-40.

35. Dashkevich N.M., Vuimo T.A., Ovsepyan R.A., Surov S.S., Soshitova N.P., Panteleev M.A., Ataullakhanov F.I., et al. Effect of pre-analytical conditions on the thrombodynamics assay. Thromb Res 2014; 133: 472-6.

36. Lipets E., Vlasova O., Urnova E., Margolin O., Soloveva A., Ostapushchenko O., Andersen J., et al. Circulating contact-pathway-activating microparticles to-gether with factors IXa and XIa induce spontaneous clotting in plasma of hematology and cardiologic patients. PLoS One 2014, 9: e87692.

37. Ovanesov M.V., Panteleev M.A., Sinau-ridze E.I., Kireev D.A., Plyushch O.P., Kopylov K.G., Lopatina E.G., et al. Mechanisms of action of recombinant activated factor VII in the context of tissue factor concentration and distribution. Blood Coagul Fibrinolysis 2008; 19: 743-55.

38. Panteleev M.A., Dashkevich N.M., Atau-llakhanov F.I. Hemostasis and thrombosis beyond biochemistry: roles of geometry, flow and diffusion. Thromb Res 2015; 136: 699-711.

39. Panteleev M.A., Ovanesov M.V., Kire-ev D.A., Shibeko A.M., Sinauridze E.I., Ananyeva N.M., Butylin A.A., et al. Spatial propagation and localization of blood coagulation are regulated by intrinsic and protein C pathways, respectively. Biophys J 2006; 90: 1489-500.

40. Parunov L.A., Fadeeva O.A., Balandina A.N., Soshitova N.P., Kopylov K.G., Kumskova M.A., Gilbert J.C., et al. Improvement of spatial fibrin formation by the anti-TFPI aptamer BAX499: changing clot size by targeting extrinsic pathway initiation. J Thromb Haemost 2011; 9: 1825-34.

41. Sinauridze E.I., Kireev D.A., Popenko N.Y., Pichugin A.V., Panteleev M.A., Krymskaya O.V., Ataullakhanov F.I. Platelet microparticle membranes have 50- to 100-fold higher specific procoagulant activity than activated platelets. Thromb Haemost 2007; 97: 425-34.

42. Soshitova N.P., Karamzin S.S., Balandina A.N., Fadeeva O.A., Kretchetova A.V., Galstian G.M., Panteleev M.A., et al. Predicting prothrombotic tenden-cies in sepsis using spatial clot growth dynamics. Blood Coagul Fibrinolysis 2012; 23: 498-507.

43. Solomon C., Asmis L.M., Spahn D.R. Is viscoelastic coagulation monitoring with ROTEM or TEG validated? Scand J Clin Lab Invest 2016; 76: 503-7.

44. Duarte R.C.F., Ferreira C.N., Rios D.R.A., Reis H.J.D., Carvalho M.D.G. Thrombin generation assays for global evaluation of the hemostatic system: perspectives and limitations. Rev Bras Hematol Hemoter 2017; 39: 259-65.

45. Panteleev M.A., Hemker H.C. Global/inte-gral assays in hemostasis diagnostics: promises, successes, problems and prospects. Thromb J 2015; 13: 5.

46. Prabhakarpandian B., Shen M.C., Pant K., Kiani M.F. Microfluidic devices for modeling cell-cell and particle-cell interactions in the microvasculature. Microvasc Res 2011; 82: 210-20.

47. Lawrence M.B., McIntire L.V., Eskin S.G. Effect of flow on polymorphonuclear leukocyte/endothelial cell adhesion. Blood 1987; 70: 1284-90.

48. Schaff U., Mattila P.E., Simon S.I., Walcheck B. Neutrophil adhesion to E-selectin under shear promotes the redistribution and co-clustering of ADAM17 and its proteolytic substrate L-selectin. J Leukoc Biol 2008; 83: 99-105.

49. Runyon M.K., Johnson-Kerner B.L., Isma-gilov R.F. Minimal functional model of hemostasis in a biomimetic microfluidic system. Angew Chem Int Ed Engl 2004; 43: 1531-6.

50. Neeves K.B., Onasoga A.A., Wufsus A.R. The use of microfluidics in hemostasis: clinical diagnostics and biomimetic models of vascular injury. Curr Opin Hematol 2013; 20: 417-23.

51. Prabhakarpandian B., Pant K., Scott R.C., Pattillo C.B., Irimia D., Kiani M.F., Sundaram S. Synthetic microvascular networks for quantitative analysis of particle adhesion. Biomed Microdevices 2008; 10: 585-95.

52. Isenberg B.C., Williams C., Tranquillo R.T. Endothelialization and flow conditioning of fibrin-based media-equivalents. Ann Biomed Eng 2006; 34: 971-85.

53. Rosano J.M., Tousi N., Scott R.C., Kryn-ska B., Rizzo V., Prabhakarpandian B., Pant K., et al. A physiologically realistic in vitro model of microvascular networks. Biomed Microdevices 2009; 11: 1051-7.

54. Koning A.J., Lum P.Y., Williams J.M., Wright R. DiOC6 staining reveals organelle structure and dynamics in living yeast cells. Cell Motil Cytoskeleton 1993; 25: 111-28.

55. van Kruchten R., Cosemans J.M., Heemskerk J.W. Measurement of whole blood thrombus formation using parallel-plate flow chambers - a practical guide. Platelets 2012; 23: 229-42.

56. Neeves K.B., Maloney S.F., Fong K.P.,Schmaier A.A., Kahn M.L., Brass L.F., Diamond S.L. Microfluidic focal throm-bosis model for measuring murine platelet deposition and stability: PAR4 signaling enhances shear-resistance of platelet aggregates. J Thromb Haemost 2008; 6: 2193-201.

57. Harrison P. The role of PFA-100 testing in the investigation and management of haemostatic defects in children and adults. Br J Haematol 2005; 130: 3-10.

58. Favaloro E.J. Clinical utility of the PFA-100. Semin Thromb Hemost 2008; 34: 709-33.

59. Poon M.C., d'Oiron R., Hann I., Negrier C., de Lumley L., Thomas A., Karafoulidou A., et al. Use of recombinant factor VIIa (NovoSeven) in patients with Glanzmann thrombasthenia. Semin Hematol 2001; 38: 21-5.

60. Lippi G., Ippolito L., Zobbi V., Sandei F., Favaloro E.J. Sample collection and platelet function testing: influence of vacuum or aspiration principle on PFA-100 test results. Blood Coagul Fibrinolysis 2013; 24: 666-9.


Для цитирования:


Ушакова О., Нечипуренко Д., Бутылин А.А., Пантелеев М. Применение проточных систем в лабораторной диагностике для интегральной оценки системы гемостаза. Вопросы гематологии/онкологии и иммунопатологии в педиатрии. 2018;17(1):117-132. https://doi.org/10.24287/1726-1708-2018-17-1-117-132

For citation:


Ushakova O.E., Nechipurenko D.Y., Butylin A.A., Panteleev M.A. Application of flow systems in laboratory diagnostics for the integral evaluation of the hemostatic system. Pediatric Hematology/Oncology and Immunopathology. 2018;17(1):117-132. (In Russ.) https://doi.org/10.24287/1726-1708-2018-17-1-117-132

Просмотров: 39


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1726-1708 (Print)
ISSN 2414-9314 (Online)