Редкий ОВИН – подобный фенотип при аутоиммунном лимфопролиферативном синдроме
Аннотация
Аутоиммунный лимфопролиферативный синдром (АЛПС) - первичный иммунодефицит (ПИД), вызванный нарушением FAS-опосредованного апоптоза, обычно сопровождающийся гипергаммаглобулинемией. Тем не менее, в данной когорте пациентов случаются исключения, затрудняющие своевременную диагностику, в частности, может наблюдаться симптоматика, напоминающая общую вариабельную иммунную недостаточность (ОВИН). В данной статье мы описываем редкий случай агаммаглобулинемии у пациентки с генетически подтвержденным аутоимммунным лимфопролиферативным синдромом.
Об авторах
Оксана Анатольевна ШвецРоссия
к.м.н., врач аллерголог-иммунолог, научный сотрудник отдела оптимизации лечения иммунодефицитов
Екатерина Анатольевна Деордиева
Россия
к.м.н., врач аллерголог-иммунолог
Екатерина Анатольевна Деордиева
Россия
к.м.н., врач аллерголог-иммунолог
Мария Андреевна Курникова
Россия
к.м.н., врач генетик
Мария Андреевна Курникова
Россия
к.м.н., врач генетик
Дмитрий Евгеньевич Першин
Россия
младший научный сотрудник, врач клинической лабораторной диагностики
Дмитрий Евгеньевич Першин
Россия
младший научный сотрудник, врач клинической лабораторной диагностики
Амина Микаиловна Киева
Россия
младший научный сотрудник, врач клинической лабораторной диагностики
Амина Микаиловна Киева
Россия
младший научный сотрудник, врач клинической лабораторной диагностики
Алексей Вадимович Пшонкин
Россия
к.м.н., заведующий стационаром кратковременного лечения
Алексей Вадимович Пшонкин
Россия
к.м.н., заведующий стационаром кратковременного лечения
Наталия Сергеевна Сметанина
Россия
д.м.н., профессор, заместитель директора Института гематологии, иммунологии и клеточных технологий, заместитель главного врача по лечебно-консультативной работе
Наталия Сергеевна Сметанина
Россия
д.м.н., профессор, заместитель директора Института гематологии, иммунологии и клеточных технологий, заместитель главного врача по лечебно-консультативной работе
Анна Юрьевна Щербина
Россия
д.м.н., профессор РАН, заведующая отделением иммунологии
Анна Юрьевна Щербина
Россия
д.м.н., профессор РАН, заведующая отделением иммунологии
Список литературы
1. Teachey DT, Seif AE, Grupp SA. Advances in the management and understanding of autoimmune lymphoproliferative syndrome (ALPS). Br J Haematol. 2010;148(2):205–16.
2. Sneller MC, Wang J, Dale JK, et al. Clinical, immunologic, and genetic features of an autoimmune lymphoproliferative syndrome associated with abnormal lymphocyte apoptosis. Blood. 1997;89(4):1341–48.
3. Dowdell KC, Niemela JE, Price S, Davis J, Hornung RL, Oliveira JB, et al. Somatic FAS mutations are common in patients with genetically undefined autoimmune lymphoproliferative syndrome. Blood. 2010;115(25):5164-¬9.
4. Oliveira JB, Bleesing JJ, Dianzani U, et al. Revised diagnostic criteria and classification for the autoimmune lymphoproliferative syndrome (ALPS): report from the 2009 NIH International Workshop. Blood. 2010;116(14):e35–40.
5. Holzelova E, Vonarbourg C, Stolzenberg MC, Arkwright PD, Selz F, Prieur AM, et al. Autoimmune lymphoproliferative syndrome with somatic FAS mutations. N Engl J Med.2004;351:1409-18.
6. Швец ОА, Дерипапа ЕВ, Захарова ВВ, Абрамов ДС, Деордиева ЕА, Викторова ЕА, и др. Клинико-лабораторные особенности пациентов с аутоиммунным лимфопролиферативным синдромом. Вопросы гематологии/онкологии и иммунопатологии в педиатрии. 2017; 16 (4):27–34.
7. Del-Rey M, Ruiz-Contreras J, Bosque A, Calleja S, Gomez-Rial J, Roldan E, et al. A homozygous FAS ligand gene mutation in a patient causes a new type of autoimmune lymphoproliferative syndrome. Blood. 2006;108:1306.
8. Wang J, Zheng L, Lobito A, Chan FK-M, Dale J, Sneller M, et al. Inherited human caspase 10 mutations underlie defective lymphocyte and dendritic cell apoptosis in autoimmune lymphoproliferative syndrome type II. Cell 1999; 98:47.
9. Tangye SG, Al-Herz W, Bousfiha A, Chatila T, Cunningham-Rundles C, Etzioni A, et al. Humman Inborn Errors of Immunity: 2019 Update on the Classification from the International Union of Immunological Societies Experts. J Clin Immunol. 2020;40:24-64.
10. Швец ОА, Дерипапа ЕВ, Абрамова ИН, Викторова ЕА, Родина ЮА, Деордиева ЕА, и др. Эффективность сиролимуса в терапии аутоиммунного лимфопролиферативного синдрома. Вопросы гематологии/онкологии и иммунопатологии в педиатрии. 2018;17(1):46-53.
11. Green DR, Droin N, Pinkoski M. Activation-induced cell death in T-cells. Immunol Rev. 2003;193:70-81.
12. Matson DR, Yang DT. Autoimmune Lympoproliferative syndrome. Arch Pathol Lab Med. 2020;144(2):245-51.
13. Volkl S, Rensing-Ehl A, Allg¨auer A, et al. Hyperactive mTOR pathway promotes lymphoproliferation and abnormal differentiation in autoimmune lymphoproliferative syndrome. Blood. 2016;128(2):227–38.
14. Fisher GH, Rosenberg FJ, Straus SE, Dale JK, Middleton LA, Lin AY et al. Dominant interfering Fas gene mutations impair apoptosis in a human autoimmune lymphoproliferative syndrome. Cell. 1995;81(6):935¬-46.
15. Fleisher TA, Oliveira JB. Monogenic defects in lymphocyte apoptosis. Curr. Opin. Allergy Clin. Immunol. 2012;12(6):609¬-15.
16. Швец О.А. Аутоиммунный лимфопролиферативный синдром у детей: стратегия диагностики и лечения на основе клинико-генетической характеристики: дис.канд.мед.наук. М., 2018. http://www.fnkc.ru/diss-sovet/dissday/shvets_o/diss.pdf
17. Neven B, Magerus-Chatinet A, Florkin B, Gobert D, Lambotte O, De Somer L, et al. A survey of 90 patients with autoimmune lymphoproliferative syndrome related to TNFRSF6 mutation. Blood. 2011;118:4798–807.
18. Hauck F, Magerus-¬Chatinet A, Vicca S, Rensing-Ehl A, Roesen-Wolff A, Roesler J, et al. Somatic loss of heterozygosity, but not haploinsufficiency alone, leads to full¬blown autoimmune lymphoproliferative syndrome in 1 of 12 family members with FAS start codon mutation. Clin. Immunol. 2013;147 (1):61¬-68.
19. Kanegane H, Vilela MM, Wang Y, Futatani T, Matsukura H, Miyawaki T. Autoimmune lymphoproliferative syndrome presenting with glomerulonephritis. Pediatr Nephrol. 2003;18(5):454–56.
20. Mu K, Zhang J, Gu Y, Li H, Wang H. Autoimmune lymphoproliferative syndrom with Cryptococcus infection. J Clin Immunol.2019;39(7):77-9.
21. Oksenhendler E, Spaan AN, Neven B, Stolzenberg M-C, Fusaro M, Casanova J-L. Autoimmune lymphoproliferative syndrome presenting with invasive Streptococcus pneumoniae infection. J Clin Immunol.2020;40(3):543-6.
22. Neven B, Bruneau J, Stolzenberg M-C, Meyts I, Magerus-Chatinet A, Moens L, et al. Defective anti-polysacharide response and splenic marginal zone disorganization in ALPS patients. Blood. 2014;124(10):1597-609.
23. Price S, Shaw PA, Seitz A, et al. Natural history of autoimmune lymphoproliferative syndrome associated with FAS gene mutations. Blood. 2014;123(13):1989–99.
24. Aspinall A, Pinto A, Auer IA, Bridges P, Luider J, Dimnik L, et al. Ientification of new Fas mutations in a patient with autoimmune lymphoproliferative syndrome (ALPS) and eosinophilia. Blood Cells Mol Dis.1999;25(3-4):227-38.
25. Kim Y-J, Dale JK, Noel P, Brown MR, Nutman TB, Straus SE, et al. Eosinophilia is associated with a higher mortality rate among patients with autoimmune lymphoproliferative syndrome. Am J Hematol. 2007;82(7):615-24.
26. ESID Registry – Working Definitions for Clinical Diagnosis of PID. Available at: http://esid.org/Working¬Parties/Registry/Diagnosis¬criteria.
27. Bleesing JJ, Brown MR, Straus SE, Dale JK, Seigel RM, Johnson M, et al. Immunophenotypic profiles in families with autoimmune lymphoproliferative syndrome. Blood. 2001;98(8):2466-73.
28. Chun HJ, Zheng L, Ahmad M, Wang J, Speirs CK, Seigel RM, et al. Pleotropic defects in lymphocyte activation caused by caspase-8 mutations lead to human immunodeficiency. Nature. 2002;419(6905):395-9.
29. Rieux-Laucat F, Blachère S, Danielan S, De Villartay JP, Oleastro M, Solary E, et al. Lymphoproliferative syndrome with autoimmunity: A possible genetic basis for dominant expression of the clinical manifestations. Blood.1999;94(8):2575-82.
30. Rensing-Ehl A, Warnatz K, Fuchs S, Schlesier M, Salzer U, Draeger R, et al. Clinical and immunological ov rlap between autoimmune lymphoproliferative syndrome and common variable immunodeficiency. Clin Immunol. 2010;137(3):357-65.
31. Narra MB, Abdou NI. Autoimmune lymphoproliferative syndrome in a patient with common variable immunodeficiency: dichotomy of apoptosis. Ann. Allergy Asthma Immunol. 2007; 98 (6): 585–8.
32. Bonilla FA, Barlan I, Chapel H, et al. International Consensus Document (ICON): Common variable immunodeficiency disorders. J Allergy Clin Immunol Pract. 2016;4:38-59.
33. Picard C, Bobby Gaspar H, Al-Herz W, et al. International Union of Immunological Societies: 2017 Primary Immunodeficiency Diseases Committee Report on Inborn Errors of Immunity. J Clin Immunol. 2018;38:96-128.
34. Berglund LJ, Wong SWJ, Fulcher DA. B-cell maturation defects in common variable immunodeficiency and association with clinical features. Pathology. 2008;40(3):288-94.
35. Seidel MG, Kindle G, Gathmann B, et al. The European Society for Immunodeficiencies (ESID) Registry Working Definitions for the Clinical Diagnosis of Inborn Errors of Immunity. J Allergy Clin Immunol Pract. 2019;7(6):1763-70.
36. Bogaert DJ, Dullaers M, Lambrecht BN, Vermaelen KY, De Baere E, Haerynck F. Genes associated with common variable immunodeficiency: one diagnosis to rule them all? J Med Genet. 2016;53:575-90.
37. de Valles-Ibanez G, Esteve-Sole A, Piquer M, et al. Evaluating the genetics of common variable immunodeficiency: monogenetic model and beyond. Front Immunol. 2018;9:636.
38. van Montfrans JM, Hoepelman AI, Otto S, et al. CD27 deficiency is associated with combined immunodeficiency and persistent symptomatic EBV viremia. J Allergy Clin Immunol. 2012;129:787-93
39. Castigli E, Wilson SA, Garibyan L, et al. TACI is mutant in common variable immunodeficiency and IgA deficiency. Nat Genet. 2005;37:829e834.
40. Salzer U, Chapel HM, Webster AD, et al. Mutations in TNFRSF13B encoding TACI are associated with common variable immunodeficiency in humans. Nat Genet. 2005;37:820-28.
41. Tuijnenburg P, Lango Allen H, Burns SO, et al. Loss-of-function nuclear factor kappaB subunit 1 (NFKB1) variants are the most common monogenic cause of common variable immunodeficiency in Europeans. J Allergy Clin Immunol. 2018;142(4):1285-96.
42. Chen K, Coonrod EM, Kumanovics A, et al. Germline mutations in NFKB2 implicate the noncanonical NF-kappaB pathway in the pathogenesis of common variable immunodeficiency. Am J Hum Genet. 2013;93:812-24.
43. Angulo I, Vadas O, Garcon F, et al. Phosphoinositide 3-kinase delta gene mutation predisposes to respiratory infection and airway damage. Science. 2013; 342:866-71.
44. Lucas CL, Kuehn HS, Zhao F, et al. Dominant-activating germline mutations in the gene encoding the PI(3)K catalytic subunit p110delta result in T cell senescence and human immunodeficiency. Nat Immunol. 2014;15:88-97.
45. Rae W. Indications to Epigenetic Dysfunction in the Pathogenesis of Common Variable Immunodeficiency. Arch Immunol Ther Exp. 2017;65:101-10.
46. Rodriguez-Cortez VC, Del Pino-Molina L, Rodriguez-Ubreva J, Ciudad L, Gomez-Cabrero D, Company C, Urquiza JM, Tegner J, Rodriguez-Gallego C, Lopez-Granados E, Ballestar E. Monozygotic twins discordant for common variable immunodeficiency reveal impaired DNA demethylation during naive-to-memory B-cell transition. Nature communications. 2015;6:7335.
47. Heo JB, Lee YS, Sung S. Epigenetic regulation by long noncoding RNAs in plants. Chromosome Res. 2013;21(6-7):685-93.
48. Patuzzo G, Barbieri A, Tinazzi E, Veneri D, Argentino G, Moretta F, Puccetti A, Lunardi C. Autoimmunity and infection in common variable immunodeficiency (CVID). Autoimmun Rev. 2016;15:877-82.
49. Chapel H, Lucas M, Lee M, et al. Common variable immunodeficiency disorders: division into distinct clinical phenotypes. Blood. 2008;112:277-86.
50. Gathmann B, Mahlaoui N, Ceredih, et al. Clinical picture and treatment of 2212 patients with common variable immunodeficiency. J Allergy Clin Immunol. 2014;134:116-26.
51. Wehr C, Kivioja T, Schmitt C, et al. The EUROclass trial: defining subgroups in common variable immunodeficiency. Blood. 2008;111:77-85.
52. Resnick ES, Moshier EL, Godbold JH, Cunningham-Rundles C. Morbidity and mortality in common variable immune deficiency over 4 decades. Blood. 2012; 119:1650-7.
53. Abolhassani H, Amirkashani D, Parvaneh N, et al. Autoimmune phenotype in patients with common variable immunodeficiency. J Invest Allergol Clin Immunol. 2013;23:323-9.
54. Ramirez-Vargas N, Arablin-Oropeza SE, Mojica-Martinez D, et al. Clinical and immunological features of common variable immunodeficiency in Mexican patients. Allergol Immunopathol (Madr). 2014;42:235-40.
55. Xiao X, Miao Q, Chang C, Gershwin ME, Ma X. Common variable immunodeficiency and autoimmunity: an inconvenient truth. Autoimmun Rev. 2014;13:858-64.
56. Megna M, Pecoraro A, Balato N, et al. Psoriasis in a cohort of patients with common variable immunodeficiency. Br J Dermatol. 2019;180:935-6.
57. Kiaee F, Azizi G, Rafiemanesh H, Zainaldain H, Sadaat Rizvi F, Alizadeh M, et al. Malignancy in common variable immunodeficiency: a systematic review and meta-analysis. Expert Rev Clin Immunol. 2019;15(10):1105-13.
58. Carter CR, Aravind G, Smalle NL, Cole JY, Savic S, Wood PM. CVID patients with autoimmunity have elevated T cell expression of granzyme B and HLA-DR and reduced levels of Treg cells. J Clin Pathol. 2013;66:146-50.
59. Warnatz K, Voll RE. Pathogenesis of autoimmunity in common variable immunodeficiency. Front Immunol. 2012;3:210.
60. Farrokhi AS, Aghamohammadi A, Pourhamdi S, Mohammadinejad P, Abolhassani H, Moazzeni SM. Evaluation of class switch recombination in B lymphocytes of patients with common variable immunodeficiency. J Immunol Methods. 2013;394:94-9.
61. Agarwal S, Cunningham-Rundles C. Autoimmunity in Common Variable Immunodeficiency. Ann Allergy Asthma Immunol. 2019;123:454-60.
62. Baldovino S, Montin D, Martino S, Sciascia S, Menegatti E, Roccatello D. Common variable immunodeficiency: crossroads between infections, inflammation and autoimmunity. Autoimmun Rev. 2013 Jun;12(8):796-801.
63. Richardson CT, Slack MA, Dhillon G, Marcus CZ, Barnard J, Palanichamy A, et al. Failure of B Cell Tolerance in CVID. Front Immunol. 2019;10:2881.
64. Caminha I, Fleisher TA, Hornung RL, Dale JK, Niemela JE, Price S, et al. Using biomarkers to predict the presence of FAS mutations in patients with features of the autoimmune lymphoproliferative syndrome, J Allergy Clin Immunol 125 (2010) 946–9.
65. Roberts CA, Ayers L, Bateman E A L, Sadler R, Magerus-Chatinet A, Rieux-Laucat F, et al. Investigation of common variable immunodeficiency patients and healthy individuals using autoimmune lymphoproliferative syndrome biomarkers. Hum Immunol. 2013;74(12):1531-5.
66. Salehzadeh M, Aghamohammadi A, Rezaei N. Evaluation of immunoglobulin levels and infection rate in patients with common variable immunodeficiency after immunoglobulin replacement therapy. Microbiol Immunol Infect. 2010;43(1):11-7.
67. Gardulf A, Abolhassani H, Gustafson R, Eriksson LE, Hammarstrom L. Predictive markers for humoral influenza vaccine response in patients with common variable immunodeficiency. J Allergy Clin Immunol. 2018; 142(6):1922-31.
68. Wehr C, Gennery AR, Lindemans C, Schulz A, Hoenig M, Marks R, et al. Multicenter experience in hematopoietic stem cell transplantation for serious complications of common variable immunodeficiency. J Allergy Clin Immunol. 2015;135:988-97.
69. Rao VK, Oliveira JB. How I treat autoimmune lymphoproliferative syndrome. Blood. 2011;118(22):5741–51.
70. Bleesing JJ, Straus SE, Fleisher TA. Autoimmune lymphoproliferative syndrome. A human disorder of abnormal lymphocyte survival. Pediatr Clin North Am. 2000 Dec;47(6):1291-310
71. Teachey DT, Greiner R, Seif A, Attiyeh E, Bleesing G, Choi J, et al. Treatment with sirolimus results in complete responses in patients with autoimmune lymphoproliferative syndrome. Br J Haematol. 2009;145(1):101-6.
72. Klemann C, Esquivel M, Magerus-Chatinet A, et al. Evolution of disease activity and biomarkers on and off rapamycin in 28 patients with autoimmune lymphoproliferative syndrome. Haematologica. 2017;102(2):e52–6.
73. Rubin LG, Levin MJ, Ljungman P, Davies EG, Avery R, Tomblyn M, et al. 2013 IDSA clinical practice guideline for vaccination of the immunocompromised host.
74. Clin Infect Dis. 2014;58(3):309-18.
75. Hammerquist RJ, Messerschmidt KA, Pottebaum AA, Hellwig TR.
76. Vaccinations in asplenic adults. Am J Health Syst Pharm. 2016 May 1;73(9):e220-8.
77. Sleight BJ, Prasad VC, DeLaat C, Steele P, Ballard E, Arceci RJ, et al. Correction of autoimmune lymphoproliferative syndrome by bone marrow transplantation. Bone Marrow Transplant. 1998;22(4):375-80.
78. Benkerrou M, Le Deist F, de Villartay JP, Caillat-Zucman S, Rieux-Laucat F, Jabado N, et al. Correction of Fas (CD95) deficiency by haploidentical bone marrow transplantation. Eur J Immunol. 1997;27(8):2043-7.
Дополнительные файлы
![]() |
1. Таблицы и рисунки к статье | |
Тема | ||
Тип | таблицы и рисунки | |
Скачать
(713KB)
|
Метаданные |
Рецензия
Для цитирования:
Швец О.А., Деордиева Е.А., Деордиева Е.А., Курникова М.А., Курникова М.А., Першин Д.Е., Першин Д.Е., Киева А.М., Киева А.М., Пшонкин А.В., Пшонкин А.В., Сметанина Н.С., Сметанина Н.С., Щербина А.Ю., Щербина А.Ю. Редкий ОВИН – подобный фенотип при аутоиммунном лимфопролиферативном синдроме. Вопросы гематологии/онкологии и иммунопатологии в педиатрии. 2021;20(1).