Preview

Вопросы гематологии/онкологии и иммунопатологии в педиатрии

Расширенный поиск

Дефицит пируваткиназы и несфероцитарная гемолитическая анемия

https://doi.org/10.24287/1726-1708-2020-19-3-121-130

Аннотация

Обзор посвящен одному из основных регуляторных ферментов гликолиза в эритроцитах – пируваткиназе, дефицит которого часто является причиной наследственной несфероцитарной гемолитической анемии. Рассмотрены строение и функция пируваткиназы, известные на сегодняшний день мутации гена этого фермента. Авторы провели анализ связи генетических аномалий с нарушением функции фермента и тяжестью клинических проявлений.

Об авторах

Е. А. Бовт
ФГБУ «Национальный медицинский исследовательский центр детской гематологии, онкологии и иммунологии им. Дмитрия Рогачева» Минздрава России; ФГБУН «Центр теоретических проблем физико-химической фармакологии» РАН
Россия

лаборант-исследователь лаборатории биофизики;

аспирантка лаборатории физиологии и биофизики клетки,

117997, Москва, ул. Саморы Машела, 1 



Л. Д. Колева
ФГБУ «Национальный медицинский исследовательский центр детской гематологии, онкологии и иммунологии им. Дмитрия Рогачева» Минздрава России; ФГБУН «Центр теоретических проблем физико-химической фармакологии» РАН
Россия
Москва


Е. А. Черняк
ФГБУ «Национальный медицинский исследовательский центр детской гематологии, онкологии и иммунологии им. Дмитрия Рогачева» Минздрава России
Россия
Москва


Д. С. Прудинник
ФГБУ «Национальный медицинский исследовательский центр детской гематологии, онкологии и иммунологии им. Дмитрия Рогачева» Минздрава России
Россия
Москва


Ф. И. Атауллаханов
ФГБУ «Национальный медицинский исследовательский центр детской гематологии, онкологии и иммунологии им. Дмитрия Рогачева» Минздрава России; ФГБУН «Центр теоретических проблем физико-химической фармакологии» РАН; ФГБОУ ВО «Московский государственный университет им. М.В. Ломоносова»; ФГАОУ ВО «Московский физико-технический институт (национальный исследовательский университет)»
Россия

Москва;

Московская область, Долгопрудный



Н. С. Сметанина
ФГБУ «Национальный медицинский исследовательский центр детской гематологии, онкологии и иммунологии им. Дмитрия Рогачева» Минздрава России
Россия
Москва


Е. И. Синауридзе
ФГБУ «Национальный медицинский исследовательский центр детской гематологии, онкологии и иммунологии им. Дмитрия Рогачева» Минздрава России; ФГБУН «Центр теоретических проблем физико-химической фармакологии» РАН
Россия
Москва


Список литературы

1. Valentine W.N. Hereditary hemolytic anemias associated with specific erythrocyte enzymopathies. Calif Med 1968; 108 (4): 280–94.

2. Zanella A., Bianchi P. Red cell pyruvate kinase deficiency: From genetics to clinical manifestations. Best Pract Res Clin Haematol 2000; 13 (1): 57–81. DOI: 10.1053/beha.1999.0057

3. Yamada K., Noguchi T. Nutrient and hormonal regulation of pyruvate kinase gene expression. Biochem J 1999; 337 (1): 1–11.

4. Tani K., Fujii H., Nagata S., Miwa S. Human liver type pyruvate kinase: Complete amino acid sequence and the expression in mammalian cells. Proc Natl Acad Sci USA 1988; 85 (6): 1792–5. DOI: 10.1073/pnas.85.6.1792

5. Lenzner C., Nürnberg P., Jacobasch G., Thiele B.J. Complete genomic sequence of the human PK-L/R-gene includes four intragenic polymorphisms defining different haplotype backgrounds of normal and mutant PK-genes. Mitochondrial DNA 1997; 8 (1–2): 45–53. DOI: 10.3109/10425179709020884

6. Van Wijk R., Van Solinge W.W. The energy-less red blood cell is lost: Erythrocyte enzyme abnormalities of glycolysis. Blood 2005; 106 (13): 4034–42. DOI: 10.1182/blood-2005-04-1622

7. Prakasam G., Bamezai R.N.K. Pyruvate Kinase. In: Encyclopedia of Cancer (Reference Моdule in Biomedical Sciencies), 3rd еd. Vol. 3, Elsevier; 2019. Р. 311– 20. DOI: 10.1016/b978-0-12-801238-3.64999-1. [Электронный ресурс]. URL: http://dx.doi.org/10.1016/B978-0-12-801238-3.64999-1 (Дата обращения 25.11.2019).

8. Meza N.W., Alonso-Ferrero M.E., Navarro S., Quintana-Bustamante O., Valeri A., Garcia-Gomez M., et al. Rescue of pyruvate kinase deficiency in mice by gene therapy using the human isoenzyme. Mol Ther 2009; 17 (12): 2000–9. DOI: 10.1038/mt.2009.200

9. Valentine W.N., Tanaka K.R., Miwa S. A specific erythrocyte glycolytic enzyme defect (pyruvate kinase) in three subjects with congenital non-spherocytic hemolytic anemia. Trans Assoc Am Physicians 1961; 74: 100–10.

10. Beutler E., Gelbart T. Estimating the prevalence of pyruvate kinase deficiency from the gene frequency in the general white population. Blood 2000; 95 (11): 3585–8.

11. Max-Audit I., Testa U., Kechemir D., Titeux M., Vainchenker W., Rosa R. Pattern of pyruvate kinase isozymes in erythroleukemia cell lines and in normal human erythroblasts. Blood 1984; 64 (4): 930–6.

12. Nakashima K. Further evidence of molecular alteration and aberration of erythrocyte pyruvate kinase. Clin Chim Acta 1974; 55 (2): 245–54.

13. Kahn A., Marie J. Pyruvate kinases from human erythrocytes and liver. Methods Enzymol 1982; 90 (Pt. E): 131–40. DOI: 10.1016/s0076-6879(82)90119-7

14. Noguchi T., Inoue H., Tanaka T. The M1- and M2-type isozymes of rat pyruvate kinase are produced from the same gene by alternative RNA splicing. J Biol Chem 1986; 261 (29): 13807–12.

15. Dombrauckas J.D., Santarsiero B.D., Mesecar A.D. Structural basis for tumor pyruvate kinase M2 allosteric regulation and catalysis. Biochemistry 2005; 44 (27): 9417–29.

16. Jurica M.S., Mesecar A., Heath P.J., Shi W., Nowak T., Stoddard B.L. The allosteric regulation of pyruvate kinase by fructose-1,6-bisphosphate. Structure 1998; 6 (2): 195–210.

17. Rigden D.J., Phillips S.E.V., Michels P.A.M., Fothergill-Gilmore L.A. The structure of pyruvate kinase from Leishmania mexicana reveals details of the allosteric transition and unusual effector specificity. J Mol Biol 1999; 291 (3): 615–35.

18. Mattevi A., Valentini G., Rizzi M., Speranza M.L., Bolognesi M., Coda A. Crystal structure of Escherichia coli pyruvate kinase type I: molecular basis of the allosteric transition. Structure 1995; 3 (7): 729–41.

19. Valentini G., Chiarelli L.R., Fortin R., Dolzan M., Galizzi A., Abraham D.J., et al. Structure and function of human erythrocyte pyruvate kinase. J Biol Chem 2002; 277 (26): 23807–14.

20. Allen S.C., Muirhead H. Refined three-dimensional structure of cat-muscle (M1) pyruvate kinase at a resolution of 2.6 Å. Acta Crystallogr Sect D Biol Crystallogr 1996; 52 (3): 499–504.

21. Larsen T.M., Laughlin L.T., Holden H.M., Rayment I., Reed G.H. Structure of rabbit muscle pyruvate kinase complexed with Mn2+, K+ , and pyruvate. Biochemistry 1994; 33 (20): 6301–9.

22. Munoz M.E., Ponce E. Pyruvate kinase: current status of regulatory and functional properties. Comp Biochem Physiol B Biochem Mol Biol 2003; 135 (2): 197– 218.

23. Fothergill-Gilmore L.A., Michels P.A.M. Evolution of glycolysis. Prog Biophys Mol Biol 1993; 59 (2): 105–235.

24. Valentini G., Chiarelli L., Fortini R., Speranza M.L., Galizzi A., Mattevi A. The allosteric regulation of pyruvate kinase: A site-directed mutagenesis study. J Biol Chem 2000; 275 (24): 18145–52.

25. Van Berkel T.J.C., Staal G.E.J., Koster J.F., Nyessen J.G., van Milligen-Boersma L. On the molecular basis of pyruvate kinase deficiency II. Role of thiol groups in pyruvate kinase from pyruvate kinase-deficient patients. Biochim Biophys Acta - Enzymol 1974; 334 (2): 361–7.

26. Zanella A., Fermo E., Bianchi P., Chiarelli L.R., Valentini G. Pyruvate kinase deficiency: The genotype-phenotype association. Blood Rev 2007; 21 (4): 217–31.

27. Zanella A., Fermo E., Bianchi P., Valentini G. Red cell pyruvate kinase deficiency: Molecular and clinical aspects. Br J Haematol 2005; 130 (1): 11–25.

28. Wang C., Chiarelli L.R., Bianchi P., Abraham D.J., Galizzi A., Zanella A.M.A., et al. Human erythrocyte pyruvate kinase: Characterization of the recombinant enzyme and a mutant form (R510Q) causing nonspherocytic hemolytic anemia. Blood 2001; 98 (10): 3113–20.

29. Mattevi A., Bolognesi M., Valentini G. The allosteric regulation of pyruvate kinase. FEBS Lett 1996;389 (1): 15–9.

30. Wooll J.O., Friesen R.H.E., White M.A., Watowich S.J., Fox R.O., Lee J.C., et al. Structural and functional linkages between subunit interfaces in mammalian pyruvate kinase. J Mol Biol 2001; 312 (3): 525–40.

31. Daębrowska A., Pietkiewicz J., Daębrowska K., Czapińska E., Danielewicz R. Interaction of M1 and M2 isozymes pyruvate kinase from human tissues with phospholipids. Biochim Biophys Acta - Protein Struct Mol Enzymol 1998; 1383 (1): 123–9.

32. Ikeda Y., Noguchi T. Allosteric regulation of pyruvate kinase M 2 isozyme involves a cysteine residue in the intersubunit contact. J Biol Chem 1998; 273 (20): 12227–33.

33. Luo W., Semenza G.L. Emerging roles of PKM2 in cell metabolism and cancer progression. Trends Endocrinol Metab 2012; 23 (11): 560–6.

34. Ernest I., Callens M., Opperdoes F.R., Michels P.A.M. Pyruvate kinase of Leishmania mexicana mexicana Cloning and analysis of the gene, overexpression in Escherichia coli and characterization of the enzyme. Mol Biochem Parasitol 1994; 64 (1): 43–54.

35. Valentini G., Speranza M.L., Iadorola P., Ferri G., Malcovati M. Reactivity of the fructose 1,6-bisphosphate-activated pyruvate kinase from Escherichia coli with pyridoxal 5’-phosphate. Biol Chem Hoppe Seyler 1988; 369 (11): 1219–26.

36. Kanno H., Fujii H., Hirono A., Miwa S. cDNA cloning of human R-type pyruvate kinase and identification of a single amino acid substitution (Thr384----Met) affecting enzymatic stability in a pyruvate kinase variant (PK Tokyo) associated with hereditary hemolytic anemia. Proc Natl Acad Sci U S A 1991; 88 (18): 8218–21.

37. Neubauer B., Lakomek M., Winkler H., Parke M., Hofferbert S., Schröter W. Point mutations in the L-type pyruvate kinase gene of two children with hemolytic anemia caused by pyruvate kinase deficiency. Blood 1991; 77 (9): 1871–5.

38. Manco L., Ribeiro M.L., Almeida H., Freitas O., Abade A., Tamagnini G. PK-LR gene mutations in pyruvate kinase deficient Portuguese patients. Br J Haematol 1999; 105 (3): 591–5.

39. Canu G., De Bonis M., Minucci A., Capoluongo E. Red blood cell PK deficiency: An update of PK-LR gene mutation database. Blood Cells, Mol Dis 2016 (March); 57: 100–9.

40. Martinov M.V., Plotnikov A.G., Vitvitsky V.M., Ataullakhanov F.I. Deficiencies of glycolytic enzymes as a possible cause of hemolytic anemia. Biochim Biophys Acta - Gen Subj 2000; 1474 (1): 75–87.

41. Van Wijk R., Van Solinge W.W., Nerlov C., Beutler E., Gelbart T., Rijksen G., et al. Disruption of a novel regulatory element in the erythroid-specific promoter of the human PKLR gene causes severe pyruvate kinase deficiency. Blood 2003; 101 (4): 1596–602.

42. Lenzner C., Nürnberg P., Jacobasch G., Gerth C., Thiele B.J. Molecular analysis of 29 pyruvate kinase-deficient patients from central Europe with hereditary hemolytic anemia. Blood 1997; 89 (5):1793–9.

43. Zarza R., Alvarez R., Pujades A., Nomdedeu B., Carrera A., Estella J., et al. Molecular characterization of the PK-LR gene in pyruvate kinase deficient Spanish patients. Red Cell Pathology Group of the Spanish Society of Haematology (AEHH). Br J Haematol 1998; 103 (2): 377–82.

44. Lenzner C., Nürnberg P., Thiele B.J., Reis A., Brabec V., Sakalova A., et al. Mutations in the pyruvate kinase L gene in patients with hereditary hemolytic anemia. Blood 1994; 83 (10): 2817–22.

45. Kanno H., Ballas S.K., Miwa S., Fujii H., Bowman H.S. Molecular abnormality of erythrocyte pyruvate kinase deficiency in the Amish. Blood 1994; 83 (8): 2311–6.

46. Baronciani L., Beutler E. Molecular study of pyruvate kinase deficient patients with hereditary nonspherocytic hemolytic anemia. J Clin Invest 1995; 95 (4): 1702–9.

47. Miwa S., Fujii H. Molecular basis of erythroenzymopathies associated with hereditary hemolytic anemia: Tabulation of mutant enzymes. Am J Hematol 1996; 51 (2): 122–32.

48. Miwa S., Kanno H., Fujii H. Pyruvate kinase deficiency: Historical perspective and recent progress of molecular genetics. Am J Hematol 1993; 42 (1): 31–5.

49. Baronciani L., Beutler E. Analysis of pyruvate kinase-deficiency mutations that produce nonspherocytic hemolytic anemia. Proc Natl Acad Sci U S A 1993; 90 (9): 4324–7.

50. Kedar P., Hamada T., Warang .P, Nadkarni A., Shimizu K., Fujji H., et al. Spectrum of novel mutations in the human PKLR gene in pyruvate kinase-deficient Indian patients with heterogeneous clinical phenotypes. Clin Genet 2009; 75 (2): 157–62.

51. Kugler W., Willaschek C., Holtz C., Ohlenbusch A., Laspe P., Krügener R., et al. Eight novel mutations and consequences on mRNA and protein level in pyruvate kinase-deficient patients with nonspherocytic hemolytic anemia. Hum Mutat 2000; 15 (3): 261–72.

52. Pissard S., Max-Audit I., Skopinski L., Vasson A., Vivien P., Bimet C., et al. Pyruvate kinase deficiency in France: A 3-year study reveals 27 new mutations. Br J Haematol 2006; 133 (6): 683–9.

53. Montllor L., Mañú-Pereira M.D., Llaudet-Planas E., Gómez Ramírez P., Sevilla Navarro J., Vives-Corrons J.L. Red cell pyruvate kinase deficiency in Spain: A study of 15 cases. Med Clín (Barc) 2017; 148 (1): 23–7 (in Spanish, abstract in English). DOI: 10.1016/j.medcli.2016.10.004.

54. Mojzikova R., Koralkova P., Holub D., Zidova Z., Pospisilova D., Cermak J., et al. Iron status in patients with pyruvate kinase deficiency: Neonatal hyperferritinaemia associated with a novel frameshift deletion in the PKLR gene (p.Arg518fs), and low hepcidin to ferritin ratios. Br J Haematol 2014; 165 (4): 556– 63.

55. Castro O., Kato G.J. Iron restriction in sickle cell anemia: Time for controlled clinical studies. Am J Hematol 2015; 90 (12): E217.

56. Zanella A., Bianchi P., Baronciani L., Zappa M., Bredi E., Vercellati C., et al. Molecular characterization of PK-LR gene in pyruvate kinase-deficient Italian patients. Blood 1997; 89 (10): 3847–52.

57. Larsen T.M., Benning M.M., Rayment I., Reed G.H. Structure of the bis(Mg2+)-ATP-oxalate complex of the rabbit muscle pyruvate kinase at 2.1 Å resolution: ATP binding over a barrel. Biochemistry 1998; 37 (18): 6247–55.

58. Lakomek M., Huppke P., Neubauer B., Pekrun A., Winkler H., Schröter W. Mutations in the R-type pyruvate kinase gene and altered enzyme kinetic properties in patients with hemolytic anemia due to pyruvate kinase deficiency. Ann Hematol 1994; 69 (5): 253–60.

59. Wijk R., van Wesel A.C.W., Thomas A.A.M., Rijksen G., van Solinge W.W. Ex vivo analysis of aberrant splicing induced by two donor site mutations in PKLR of a patient with severe pyruvate kinase deficiency. Br J Haemato. 2004; 125 (2): 253–63.

60. Grace R.F., Layton D.M., Barcellini W. How we manage patients with pyruvate kinase deficiency. Br J Haematol 2019; 184 (5): 721–34.

61. Grace R.F., Bianchi P., van Beers E.J., Eber S.W., Glader B., Yaish H.M., et al. Clinical spectrum of pyruvate kinase deficiency: Data from the pyruvate kinase deficiency natural history study. Blood 2018; 131 (20): 2183–92.

62. Grace R.F., Zanella A., Neufeld E.J., Morton D.H., Eber S., Yaish H., et al. Erythrocyte pyruvate kinase deficiency: 2015 status report. Am J Hematol 2015; 90 (9): 825–30.

63. Grace R.F., Cohen J., Egan S., Wells T., Witherspoon B., Ryan A., et al. The burden of disease in pyruvate kinase deficiency: Patients’ perception of the impact on health-related quality of life. Eur J Haematol 2018; 101 (6): 758–65.

64. Garate Z., Quintana-Bustamante O., Crane A.M., Olivier E., Poirot L., Galetto R., et al. Generation of a high number of healthy erythroid cells from gene-edited pyruvate kinase deficiency patient-specific induced pluripotent stem cells. Stem Cell Reports. 2015; 5 (6): 1053–66.

65. Garcia-Gomez M., Calabria A., Garcia-Bravo M., Benedicenti F., Kosinski P., Lopez-Manzaneda S., et al. Safe and efficient gene therapy for pyruvate kinase deficiency. Mol Ther 2016; 24 (7): 1187–98.

66. Kung C., Hixon J., Kosinski P.A., Cianchetta G., Histen G., Chen Y., et al. AG-348 enhances pyruvate kinase activity in red blood cells from patients with pyruvate kinase deficiency. Blood 2017; 130 (11): 1347-56.

67. Tanphaichitr V.S., Suvatte V., Issaragrisil S., Mahasandana C., Veerakul G., Chongkolwatana V., et al. Successful bone marrow transplantation in a child with red blood cell pyruvate kinase deficiency. Bone Marrow Transplant 2000; 26 (6): 689–90.


Рецензия

Для цитирования:


Бовт Е.А., Колева Л.Д., Черняк Е.А., Прудинник Д.С., Атауллаханов Ф.И., Сметанина Н.С., Синауридзе Е.И. Дефицит пируваткиназы и несфероцитарная гемолитическая анемия. Вопросы гематологии/онкологии и иммунопатологии в педиатрии. 2020;19(3):121-130. https://doi.org/10.24287/1726-1708-2020-19-3-121-130

For citation:


Bovt E.A., Koleva L.D., Chernyak E.A., Prudinnik D.S., Ataullakhanov F.I., Smetanina N.S., Sinauridze E.I. Pyruvat kinase deficiency and nonspherocytic hemolytic anemia. Pediatric Hematology/Oncology and Immunopathology. 2020;19(3):121-130. (In Russ.) https://doi.org/10.24287/1726-1708-2020-19-3-121-130

Просмотров: 8167


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1726-1708 (Print)
ISSN 2414-9314 (Online)