Preview

Вопросы гематологии/онкологии и иммунопатологии в педиатрии

Расширенный поиск

Эритроцит как идеальный носитель для внутрисосудистой доставки лекарств

https://doi.org/10.24287/1726-1708-2020-19-4-234-242

Полный текст:

Аннотация

Доставка лекарств с использованием природных биологических носителей, в частности эритроцитов, является быстро развивающейся областью изучения. Эритроциты могут действовать как носители с постепенным высвобождением фармакологического агента, в качестве биореакторов с инкапсулированными ферментами или в качестве инструмента для направленной доставки лекарств в органы-мишени, прежде всего в тканевые макрофаги, печень и селезенку. На сегодняшний день эритроциты изучены в качестве носителей для широкого спектра лекарственных соединений, таких как ферменты, антибиотики, противовоспалительные, противовирусные препараты и т. д. Обзор посвящен преимуществам эритроцитов как носителей для доставки лекарств, загруженных в них, или связанных с их поверхностью, и определяет основные направления исследований эритроцитов-носителей биологически активных веществ. Особое внимание уделяется исследованиям in vivo, раскрывающим потенциал эритроцитов-носителей для клинического применения.

Об авторах

Л. Д. Колева
ФГБУ «Национальный медицинский исследовательский центр детской гематологии, онкологии и иммунологии им. Дмитрия Рогачева» Минздрава России; ФГБУН «Центр теоретических проблем физико-химической фармакологии» РАН
Россия

Колева Лариса Дмитриевна, младший научный сотрудник лаборатории биофизики

117997, Москва, ул. Саморы Машела, 1



Ф. И. Атауллаханов
ФГБУ «Национальный медицинский исследовательский центр детской гематологии, онкологии и иммунологии им. Дмитрия Рогачева» Минздрава России; ФГБУН «Центр теоретических проблем физико-химической фармакологии» РАН; ФГБОУ ВО «Московский государственный университет им. М.В. Ломоносова»
Россия
Москва


Е. И. Синауридзе
ФГБУ «Национальный медицинский исследовательский центр детской гематологии, онкологии и иммунологии им. Дмитрия Рогачева» Минздрава России; ФГБУН «Центр теоретических проблем физико-химической фармакологии» РАН
Россия
Москва


Список литературы

1. Атауллаханов Ф.И., Борсакова Д.В., Протасов Е.С., Синауридзе Е.И., Зейналов А.М. Эритроцит: мешок с гемоглобином или живая, активная клетка? Вопросы гематологии/онкологии и иммунопатологии в педиатрии 2018; 17 (1): 108–16.

2. Koleva L., Bovt E., Ataullakhanov F., Sinauridze E. Erythrocytes as carriers : from drug delivery to biosensors. Pharmaceutics 2020; 12 (3): 276.

3. Pierigè F., Bigini N., Rossi L., Magnani M. Reengineering red blood cells for cellular therapeutics and diagnostics. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2017; 9 (5): e1454. DOI: 10.1002/wnan.1454

4. Fernandes H.S., Silva Teixeira C.S., Fernandes P.A., Ramos M.J., Cerqueira N.M.F.S.A. Amino acid deprivation using enzymes as a targeted therapy for cancer and viral infections. Expert Opin Ther Pat 2017; 27 (3): 283–97.

5. Rytting M.E. Role of L-asparaginase in acute lymphoblastic leukemia: focus on adult patients. Blood Lymphat Cancer Targets Ther 2012; 2: 117–24.

6. Cremel M., Guerin N., Campello G., Barthe Q., Berlier W., Horand F., et al. Innovative approach in Pompe disease therapy: induction of immune tolerance by antigen-encapsulated red blood cells. Int J Pharm 2015; 491 (1–2): 69–77.

7. Minetto P., Bisso N., Guolo F., Clavio M., Coviello E., Guardo D., et al. Patient and therapy-related factors affecting the toxicity of pegylated-asparaginase for the treatment of adult acute lymphoblastic leukemia. Blood 2017; 130 (Suppl 1): 1297.

8. Booth C., Gaspar B. Pegademase bovine (PEG-ADA) for the treatment of infants and children with severe combined immunodeficiency (SCID). Biologics 2009; 3: 349–58.

9. Bax B.E., Bain M.D., Fairbanks L.D., Chalmers R.A., Webster A.D.B. In vitro and in vivo studies with human carrier erythrocytes loaded with polyethylene glycol-conjugated and native adenosine deaminase. Br J Haematol 2000; 109 (3): 549–54.

10. Levene M., Bain M., Moran N., Nirmalananthan N., Poulton J., Scarpelli M., et al. Safety and efficacy of erythrocyte encapsulated thymidine phosphorylase in mitochondrial neurogastrointestinal encephalomyopathy. J Clin Med 2019; 8 (4): 457.

11. Halfon-Domenech C., Thomas X., Chabaud S., Baruchel A., Gueyffier F., Mazingue F., et al. l-asparaginase loaded red blood cells in refractory or relapsing acute lymphoblastic leukaemia in children and adults: Results of the GRASPALL 2005-01 randomized trial. Br J Haematol 2011; 153 (1): 58–65.

12. Hunault-Berger M., Leguay T., Huguet F., Leprêtre S., Deconinck E., Ojeda-Uribe M., et al. A Phase 2 study of L-asparaginase encapsulated in erythrocytes in elderly patients with Philadelphia chromosome negative acute lymphoblastic leukemia: The GRASPALL/GRAALL-SA2-2008 study. Am J Hematol 2015; 90 (9): 811–8.

13. Bax B.E., Bain M.D., Fairbanks L.D., Simmonds H.A., Webster A.D., Ronald A. Carrier erythrocyte entrapped adenosine deaminase therapy in adenosine deaminase deficiency. Adv Exp Med Biol 2000; 486: 47–50.

14. Bax B.E., Bain M.D., Fairbanks L.D., Webster A.D.B., Ind P.W., Hershfield M.S., et al. A 9-yr evaluation of carrier erythrocyte encapsulated adenosine deaminase (ADA) therapy in a patient with adult-type ADA deficiency. Eur J Haematol 2007; 79 (4): 338–48. DOI: 10.1111/j.1600-0609.2007.00927.x

15. Filosto M., Piccinelli S.C., Caria F., Cassarino S.G., Baldelli E., Galvagni A., et al. Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE-MTDPS1). J Clin Med 2018; 7 (11): 389. DOI: 10.3390/jcm7110389

16. Halter J., Schupbach W., Casali C., Elhasid R., Fay K., Hammans S., et al. Allogeneic hematopoietic SCT as treatment option for patients with mitochondrial neurogastrointestinal encephalomyopathy (MNGIE): a consensus conference proposal for a standardized approach. Bone Marrow Transplant 2011; 46 (3): 330–7.

17. Baruchel A., Bertrand Y., Thomas X., Blin N., Tavernier E., Ducassou S., et al. Updated clinical activity of GRASPA versus native l-asparaginase in combination with cooprall regimen in phase 3 randomized trial in patients with relapsed acute lymphoblastic leukemia. Blood 2015; 126 (23): 3723.

18. Bachet J., Gay F., Maréchal R., Galais M., Adenis A., Salako D., et al. Asparagine synthetase expression and phase I study with L -asparaginase encapsulated in red blood cells in patients with pancreatic adenocarcinoma. Pancreas 2015; 44 (7): 1141–7.

19. Hammel P., Bachet J.-B., Portales F., Mineur L., Metges J.-P., de la Fouchardiere C., et al. 621PDA Phase 2b of eryaspase in combination with gemcitabine or FOLFOX as second-line therapy in patients with metastatic pancreatic adenocarcinoma (NCT02195180). Ann Oncol 2017.

20. Gay F., Aguera K., Sénéchal K., Tainturier A., Berlier W., Maucort-Boulch D., et al. Methionine tumor starvation by erythrocyte-encapsulated methionine gamma-lyase activity controlled with per os vitamin B6. Cancer Med 2017; 6 (6): 1437–52.

21. Sénéchal K., Maubant S., Leblanc M., Ciré S., Gallix F., Andrivon A., et al. Erymethionase (methionine-gamma-lyase encapsulated into red blood cells) potentiates anti-PD-1 therapy in TNBC syngeneic mouse model [abstract]. Proc Am Assoc Cancer Res Annu Meet 2019; 2019 Mar 29–Apr 3; Atlanta, GA Philadelphia AACR. Cancer Res 2019; 79 (13 Suppl): Abstract nr 2258.

22. Gay F., Aguera K., Senechal K., Bes J., Chevrier A.-M., Gallix F., et al. Arginine deiminase loaded in erythrocytes: a promising formulation for L-arginine deprivation therapy in cancers. [abstract]. Proc 107th Annu Meet Am Assoc Cancer Res 2016 Apr 16–20; New Orleans, LA Philadelphia AACR. Cancer Res 2016; 76 (14 Suppl): Abstract nr 4812.

23. Yuan S.H., Ge W.H., Huo J., Wang X.H. Slow release properties and liver-targeting characteristics of methotrexate erythrocyte carriers. Fundam Clin Pharmacol 2009; 23 (2): 189–96.

24. Rossi L., Castro M., D’Orio F., Damonte G., Serafini S., Bigi L., et al. Low doses of dexamethasone constantly delivered by autologous erythrocytes slow the progression of lung disease in cystic fibrosis patients. Blood Cells Mol Dis 2004; 33 (1): 57–63.

25. Bossa F., Latiano A., Rossi L., Magnani M., Palmieri O., Dallapiccola B., et al. Erythrocyte-mediated delivery of dexamethasone in patients with mild-to-moderate ulcerative colitis, refractory to mesalamine: A randomized, controlled study. Am J Gastroenterol 2008; 103 (10): 2509–16.

26. Castro M., Rossi L., Papadatou B., Bracci F., Knafelz D., Ambrosini M., et al. Longterm treatment with autologous red blood cells loaded with dexamethasone 21–phosphate in pediatric patients affected by steroid-dependent Crohn disease. J Pediatr Gastroenterol Nutr 2007; 44: 423–6.

27. Skorokhod O.A., Kulikova E.V., Galkina N.M., Medvedev P.V., Zybunova E.E., Vitvitsky V.M., et al. Doxorubicin pharmacokinetics in lymphoma patients treated with doxorubicin-loaded eythrocytes. Haematologica 2007; 92 (4): 570–1.

28. Skorokhod O.A., Garmaeva T., Vitvitsky V.M., Isaev V.G., Parovichnikova E.N., Savchenko V.G., et al. Pharmacokinetics of erythrocyte-bound daunorubicin in patients with acute leukemia. Med Sci Monit 2004; 10 (4): 55–64.

29. Sawyer D.B., Peng X., Chen B., Pentassuglia L., Lim C.C. Mechanisms of anthracycline cardiac injury: can we identify strategies for cardioprotection? Prog Cardiovasc Dis 2010; 53 (2): 105–13.

30. Czock D., Keller F., Rasche F.M., Ulla H. Pharmacokinetics and pharmacodynamics of systemically administered glucocorticoids. Clin Pharmacokinet 2005; 44 (1): 61–98.

31. Ataullakhanov F.I., Isaev V.G., Kohno A.V., Kulikova E.V., Parovichnikova E.N., Savchenko V.G., et al. Pharmacokinetics of doxorubicin in patients with lymphoproliferative disorders after infusion of doxorubicin-loaded erythrocytes. In: Sprandel U., Way J.L. (ed.). Erythrocytes as Drug Carriers in Medicine. Boston, MA: Springer US; 1997. Рp. 137–142.

32. Murciano J., Medinilla S., Eslin D., Atochina E., Cines D.B., Muzykantov V.R. Prophylactic fibrinolysis through selective dissolution of nascent clots by tPA-carrying erythrocytes. Nat Biotechnol 2003; 21 (8): 891–6.

33. Stein S.C., Ganguly K., Belfield C.M., Xu X., Swanson E.W., Chen X.-H., et al. Erythrocyte-bound tissue plasminogen activator is neuroprotective in experimental traumatic brain injury. J Neurotrauma 2009; 26 (9): 1585–92.

34. Armstead W.M., Ganguly K., Riley J., Kiessling W.J., Cines D.B., Higazi A.A.R., et al. Red blood cell-coupled tissue plasminogen activator prevents impairment of cerebral vasodilatory responses through inhibition of c-Jun-N-terminal kinase and potentiation of p38 mitogen-activated protein kinase after cerebral photothrombosis in the newborn. Pediatr Crit Care Med 2011; 12 (6): e369.

35. Muzykantov V.R., Murciano J.C., Taylor R.P., Atochina E.N., Herraez A. Regulation of the complement-mediated elimination of red blood cells modified with biotin and streptavidin. Anal Biochem 1996; 241 (1): 109–19.

36. Muzykantov V.R., Barnathan E.S., Atochina E.N., Kuo A., Danilov S.M., Fisher A.B. Targeting of antibody-conjugated plasminogen activators to the pulmonary vasculature. J Pharmacol Exp Ther. 1996;279(2):1026–34.

37. Pozzi L.-A.M., Maciaszek J.W., Rock K.L. Both dendritic cells and macrophages can stimulate naive CD8 T cells in vivo to proliferate, develop effector function, and differentiate into memory cells. J Immunol 2005; 175 (4): 2071–81.

38. Eichler H.G., Gasic S., Bauer K., Korn A., Bacher S. In vivo clearance of antibody-sensitized human drug carrier erythrocytes. Drug-carrier erythrocytes. 1986;40(3):300–3. Clin Pharmacol Ther 1986; 40 (3): 300-3. DOI: 10.1038/clpt.1986.180

39. Delaby C., Pilard N., Hetet G., Driss F., Grandchamp B., Beaumont C., Canonne-Hergaux F. A physiological model to study iron recycling in macrophages. Exp Cell Res 2005; 310 (1): 43–53.

40. DeLoach J.R., Tangner C.H., Barton C. Hepatic pharmacokinetics of glutaraldehyde-treated methotrexate-loaded carrier erythrocytes in dogs. Res Exp Med 1983; 183 (3): 167–75.

41. Bratosin D., Mazurier J., Tissier J.P., Slomianny C., Estaquier J., Russo-Marie F., et al. Molecular mechanisms of erythrophagocytosis. Characterization of the senescent erythrocytes that are phagocytized by macrophages. C R Acad Sci III. 1997; 320 (10): 811–8. DOI: 10.1016/s0764-4469(97)85017-2

42. Mishra P.R., Jain N.K. Biotinylated methotrexate loaded erythrocytes for enhanced liver uptake. “A study on the rat”. Int J Pharm 2002; 231 (2): 145–53. DOI: 10.1016/s0378-5173(01)00847-x

43. Magnani M., Rossi L., Fraternale A., Casabianca A., Brandi G., Benatti U., De Flora A. Targeting antiviral nucleotide analogues to macrophages. J Leukoc Biol 1997; 62 (1): 133–7.

44. Magnani M., Rossi L., Fraternale A., Silvotti L., Quintavalla F., Piedimonte G., et al. FIV infection of macrophages: in vitro and in vivo inhibition by dideoxycytidine 5′-triphosphate. Vet Immunol Immunopathol 1995; 46 (1): 151–8.

45. Magnani M., Balestra E., Fraternale A., Aquaro S., Paiardini M., Cervasi B., et al. Drug-loaded red blood cell-mediated clearance of HIV-1 macrophage reservoir by selective inhibition of STAT1 expression. J Leukoc Biol 2003; 74 (5): 764–71.

46. Dominici S., Laguardia M.E., Serafini G., Chiarantini L., Fortini C., Tripiciano A., et al. Red blood cell-mediated delivery of recombinant HIV-1 Tat protein in mice induces anti-Tat neutralizing antibodies and CTL. Vaccine. 2003; 21: 2082–90.

47. Franco R., Dufour E., Kosenko E., Bax B.E., Banz A., Skorokhod O.A., et al. International seminar on the red blood cells as vehicles for drugs. Expert Opin Biol Ther 2012; 12 (1): 127–33.

48. Sabatino R., Antonelli A., Battistelli S., Schwendener R., Magnani M., Rossi L. Macrophage depletion by free bisphosphonates and zoledronate-loaded red blood cells. PLoS One 2014; 9 (6): e101260.

49. Mishra P.R., Jain N.K. Surface modified methotrexate loaded erythrocytes for enhanced macrophage uptake. J Drug Target 2000; 8 (4): 217–24.

50. Cremel M., Guérin N., Horand F., Banz A., Godfrin Y. Red blood cells as innovative antigen carrier to induce specific immune tolerance. Int J Pharm 2013; 443 (1–2): 39–49.

51. Magnani M., Chiarantini L., Vittoria E., Mancini U., Rossi L., Fazi A. Red blood cells as an antigen-delivery system. Biotechnol Appl Biochem 1992; 16 (2): 188– 94.

52. Chiarantini L., Argnanit R., Zucchinit S., Stevanatot L., Grossi M.P., Magnani M., et al. Red blood cells as delivery system for recombinant HSV-1 glycoprotein B: immunogenicity and protection in mice. Vaccine 1997; 15 (3): 276–80.

53. Banz A., Cremel M., Mouvant A., Guerin N., Horand F., Godfrin Y. Tumor growth control using red blood cells as the antigen delivery system and poly (I: C). J Immunother 2012; 35 (5): 409–17.

54. Banz A., Cremel M., Rembert A., Godfrin Y. In situ targeting of dendritic cells by antigen-loaded red blood cells: A novel approach to cancer immunotherapy. Vaccine 2010; 28 (17): 2965–72.

55. Renno T., Lebecque S., Renard N., Saeland S., Vicari A. What’s new in the field of cancer vaccines? Cell Mol Life Sci 2003; 60 (7): 1296–310.

56. Pipeline Erytech. [Электронный оесурс]. URL: https://erytech.com/pipeline/ (Дата обращения 28.11.2020)

57. European Medical Agency [Электронный ресурс]. URL: https://www.ema.europa.eu/en. (Дата обращения 28.11.2020)


Для цитирования:


Колева Л.Д., Атауллаханов Ф.И., Синауридзе Е.И. Эритроцит как идеальный носитель для внутрисосудистой доставки лекарств. Вопросы гематологии/онкологии и иммунопатологии в педиатрии. 2020;19(4):234-242. https://doi.org/10.24287/1726-1708-2020-19-4-234-242

For citation:


Koleva L.D., Ataullakhanov F.I., Sinauridze E.I. Erythrocyte as an ideal carrier for intavascular drug delivery. Pediatric Hematology/Oncology and Immunopathology. 2020;19(4):234-242. (In Russ.) https://doi.org/10.24287/1726-1708-2020-19-4-234-242

Просмотров: 179


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1726-1708 (Print)
ISSN 2414-9314 (Online)