Preview

Вопросы гематологии/онкологии и иммунопатологии в педиатрии

Расширенный поиск

Новые направления в терапии и диагностике нарушений свертывания

https://doi.org/10.24287/1726-1708-2020-19-4-243-250

Полный текст:

Аннотация

Вслед за появлением новых подходов в исследовании свертывания крови, позволяющих выявлять механизмы регуляции, связанные с транспортными процессами, пространственной локализацией процессов, взаимодействием с системами иммунитета, комплемента, фибринолизом, меняются и диагностические и терапевтические подходы, используемые в клинико-лабораторной практике. В данном обзоре будут описаны современные методы диагностики нарушений гемостаза, основанные на интегральном подходе и оценивающие сразу множество аспектов состояния системы свертывания, чувствительные не только к проявлениям кровоточивости, но и к протромботическим состояниям, а также позволяющие производить мониторинг терапии различными лекарственными препаратами, как оральными антикоагулянтами, так и антигемофильными агентами. Также будет рассказано о новых подходах в терапии нарушений гемостаза, связанных с пониманием управляющих механизмов, таких как использование биспецифичных антител как альтернативы кофакторам свертывания, ингибирование ингибиторов и разработка новых методов доставки препаратов.

Об авторах

А. М. Шибеко
ФГБУН «Центр теоретических проблем физико-химической фармакологии» РАН; ФГБУ «Национальный медицинский исследовательский центр детской гематологии, онкологии и иммунологии им. Дмитрия Рогачева» Минздрава России
Россия

Шибеко Алексей Михайлович, канд. биол. наук, ведущий научный сотрудник лаборатории биофизики

117997, Москва, ул. Саморы Машела, 1



А. Н. Баландина
ФГБУН «Центр теоретических проблем физико-химической фармакологии» РАН; ФГБУ «Национальный медицинский исследовательский центр детской гематологии, онкологии и иммунологии им. Дмитрия Рогачева» Минздрава России
Россия
Москва


М. А. Пантелеев
ФГБУН «Центр теоретических проблем физико-химической фармакологии» РАН; ФГБУ «Национальный медицинский исследовательский центр детской гематологии, онкологии и иммунологии им. Дмитрия Рогачева» Минздрава России
Россия
Москва


Список литературы

1. GBD 2017 Causes of Death Collaborators. Global, regional, and national agesex-specific mortality for 282 causes of death in 195 countries and territories, 1980-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018; 392 (10159): 1736–88. DOI: 10.1016/S0140-6736(18)32203-7

2. Srivastava A., Brewer A.K., Mauser-Bunschoten E.P., Key N.S., Kitchen S., Llinas A., et al.; Treatment Guidelines Working Group on Behalf of The World Federation of Hemophilia. Guidelines for the management of hemophilia. Haemophilia 2013; 19 (1): e1–47. DOI: 10.1111/j.1365-2516.2012.02909.x

3. Wada H., Matsumoto T., Yamashita Y. Diagnosis and treatment of disseminated intravascular coagulation (DIC) according to four DIC guidelines. J Intensive Care 2014; 2 (1): 15. DOI: 10.1186/2052-0492-2-15

4. Mannucci P.M., Levi M. Prevention and treatment of major blood loss. N Engl J Med 2007; 356 (22): 2301–11. DOI: 10.1056/NEJMra067742

5. Huth-Kühne A., Baudo F., Collins P., Ingerslev J., Kessler C.M., Lévesque H., еt аl. International recommendations on the diagnosis and treatment of patients with acquired hemophilia A. Haematologica 2009; 94 (4): 566–75. DOI: 10.3324/haematol.2008.001743

6. Shibeko A.M., Woodle S.A., Lee T.K., Ovanesov M.V. Unifying the mechanism of recombinant FVIIa action: dose dependence is regulated differently by tissue factor and phospholipids. Blood 2012; 120 (4): 891–9. DOI: 10.1182/blood-2011-11-393371

7. Lipets E.N., Antonova O.A., Shustova O.N., Losenkova K.V., Mazurov A.V., Ataullakhanov F.I. Platelet, erythrocyte, endothelial, and monocyte microparticles in coagulation activation and propagation. PLoS One 2020; 15 (5): e0227932. DOI: 10.1371/journal.pone.0227932

8. Ribo M., Montaner J., Molina C.A., Arenillas J.F., Santamarina E., AlvarezSabín J. Admission fibrinolytic profile predicts clot lysis resistance in stroke patients treated with tissue plasminogen activator. Thromb Haemost 2004; 91 (6): 1146–51. DOI: 10.1160/TH04-02-0097

9. Stangier J., Rathgen K., Stähle H., Gansser D., Roth W. The pharmacokinetics, pharmacodynamics and tolerability of dabigatran etexilate, a new oral direct thrombin inhibitor, in healthy male subjects. Br J Clin Pharmacol 2007; 64 (3): 292–303. DOI: 10.1111/j.1365-2125.2007.02899.x

10. Waters E.K., Genga R.M., Schwartz M.C., Nelson J.A., Schaub R.G., Olson K.A., et al. Aptamer ARC19499 mediates a procoagulant hemostatic effect by inhibiting tissue factor pathway inhibitor. Blood 2011; 117: 5514–22.

11. Dockal M., Pachlinger R., Hartmann R., Knappe S., Sorensen B., Wong W.Y., et al. Biological Explanation of Clinically Observed Elevation of TFPI Plasma Levels After Treatment with TFPI-Antagonistic Aptamer BAX 499. Blood 2012; 120: 1104.

12. Cardinal M., Kantaridis C., Zhu T., Sun P., Pittman D.D., Murphy J.E., Arkin S. A firstin-human study of the safety, tolerability, pharmacokinetics and pharmacodynamics of PF-06741086, an anti-tissue factor pathway inhibitor mAb, in healthy volunteers. J Thromb Haemost 2018; 16 (9): 1722–31. DOI: 10.1111/jth.14207

13. Patel-Hett S., Martin E.J., Mohammed B.M., Rakhe S., Sun P., Barrett J.C., еt al. Marstacimab, a tissue factor pathway inhibitor neutralizing antibody, improves coagulation parameters of ex vivo dosed haemophilic blood and plasmas. Haemophilia 2019; 25 (5): 797–806. DOI: 10.1111/hae.13820

14. Kitazawa T., Igawa T., Sampei Z., Muto A., Kojima T., Soeda T., et al. A bispecific antibody to factors IXa and X restores factor VIII hemostatic activity in a hemophilia A model. Nat Med 2012; 18 (10): 1570–4. DOI: 10.1038/nm.2942

15. Oldenburg J., Mahlangu J.N., Kim B., Schmitt C., Callaghan M.U., Young G., еt al. Emicizumab Prophylaxis in Hemophilia A with Inhibitors. N Engl J Med 2017; 377 (9): 809–18. DOI: 10.1056/NEJMoa1703068

16. Schumacher W.A., Luettgen J.M., Quan M.L., Seiffert D.A. Inhibition of factor XIa as a new approach to anticoagulation. Arterioscler Thromb Vasc Biol 2010; 30 (3): 388– 92. DOI: 10.1161/ATVBAHA.109.197178

17. Müller F., Gailani D., Renné T. Factor XI and XII as antithrombotic targets. Curr Opin Hematol 2011; 18 (5): 349–55. DOI: 10.1097/MOH.0b013e3283497e61

18. Hagedorn I., Schmidbauer S., Pleines I., Kleinschnitz C., Kronthaler U., Stoll G., et al. Factor XIIa inhibitor recombinant human albumin Infestin-4 abolishes occlusive arterial thrombus formation without affecting bleeding. Circulation 2010; 121 (13): 1510–7. DOI: 10.1161/CIRCULATIONAHA.109.924761

19. Schumacher W.A., Seiler S.E., Steinbacher T.E., Stewart A.B., Bostwick J.S., Hartl K.S., et аl. Antithrombotic and hemostatic effects of a small molecule factor XIa inhibitor in rats. Eur J Pharmacol 2007; 570 (1–3): 167–74. DOI: 10.1016/j.ejphar.2007.05.043

20. Yatuv R., Robinson M., Dayan-Tarshish I., Baru M. The use of PEGylated liposomes in the development of drug delivery applications for the treatment of hemophilia. Int J Nanomedicine 2010; 5: 581–91. DOI: 10.2147/ijn.s8603

21. Powell J.S., Nugent D.J., Harrison J.A., Soni A., Luk A., Stass H., Gorina E. Safety and pharmacokinetics of a recombinant factor VIII with pegylated liposomes in severe hemophilia A. J Thromb Haemost 2008; 6 (2): 277–83. DOI: 10.1111/j.1538-7836.2007.02856.x

22. Martinowitz U., Lalezari S., Luboshitz J., Lubetsky A., Spira J. Infusion rates of recombinant FVIII-FS with PEGylated liposomes in haemophilia A. Haemophilia 2008; 14 (5): 1122–4. DOI: 10.1111/J.1365-2516.2008.01699.X

23. Szebeni J. Complement activation-related pseudoallergy: a new class of drug-induced acute immune toxicity. Toxicology 2005; 216 (2–3): 106–21. DOI: 10.1016/j.tox.2005.07.023

24. Konkle B.A., Shapiro A., Quon D., Staber J., Suzuki T., Poloskey S., et al. BIVV001: The First Investigational Factor VIII Therapy to Break Through the VWF Ceiling in Hemophilia A, with Potential for Extended Protection for One Week or Longer. Blood 2018; 132: 636.

25. Prilepskii A.Y., Fakhardo A.F., Drozdov A.S., Vinogradov V.V., Dudanov I.P., Shtil A.A., et al. Urokinase-Conjugated Magnetite Nanoparticles as a Promising Drug Delivery System for Targeted Thrombolysis: Synthesis and Preclinical Evaluation. ACS Appl Mater Interfaces 2018; 10 (43): 36764–75. DOI: 10.1021/acsami.8b14790

26. Guo X.-L., Chung T.-H., Qin Y., Zheng J., Zheng H., Sheng L., et al. Hemophilia Gene Therapy: New Development from Bench to Bed Side. Curr Gene Ther 2019; 19 (4): 264–73. DOI: 10.2174/1566523219666190924121836

27. Martinelli I., Mannucci P.M., De Stefano V., Taioli E., Rossi V., Crosti F., et al. Different risks of thrombosis in four coagulation defects associated with inherited thrombophilia: a study of 150 families. Blood 1998; 92 (7): 2353–8.

28. Sammaritano L.R. Antiphospholipid syndrome: review. South Med J 2005; 98 (6): 617–25; quiz 626–7, 645. DOI: 10.1097/01.СМЖ.0000166748.90089.65

29. Xue Z., Zhou Y., Wu C., Lin J., Liu X., Zhu W. Non-vitamin K antagonist oral anticoagulants in Asian patients with atrial fibrillation: evidences from the real-world data. Heart Fail Rev 2019; 5 (6): 957–964. DOI: 10.1007/s10741-019-09878-y

30. Scrutton M.C., Ross-Murphy S.B., Bennett G.M., Stirling Y., Meade T.W. Changes in clot deformability--a possible explanation for the epidemiological association between plasma fibrinogen concentration and myocardial infarction. Blood Coagul Fibrinolysis 1994; 5 (5): 719–23. DOI: 10.1097/00001721-199410000-00007

31. Carr M.E., Hardin C.L. Fibrin has larger pores when formed in the presence of erythrocytes. Am J Physiol 1987; 253 (5 Pt 2): H1069–73. DOI: 10.1152/ajpheart.1987.253.5.H1069

32. Carr M.E., Gabriel D.A., McDonagh J. Influence of Ca2+ on the structure of reptilase-derived and thrombin-derived fibrin gels. Biochem J 1986; 239 (3): 513–6. DOI: 10.1042/bj2390513

33. Roberts W.W., Lorand L., Mockros L.F. Viscoelastic properties of fibrin clots. Biorheology 1973; 10 (1): 29–42. DOI: 10.3233/bir-1973-10105

34. Curnow J. The Overall Hemostatic Potential (OHP) Assay. Methods Mol Biol 2017; 1646: 523–31. doi: 10.1007/978-1-4939-7196-1_38

35. Collet J.P., Park D., Lesty C., Soria J., Soria C., Montalescot G., Weisel J.W. Influence of fibrin network conformation and fibrin fiber diameter on fibrinolysis speed: dynamic and structural approaches by confocal microscopy. Arterioscler Thromb Vasc Biol 2000; 20 (5): 1354–61. DOI: 10.1161/01.atv.20.5.1354

36. Sakata Y., Aoki N. Significance of cross-linking of alpha 2-plasmin inhibitor to fibrin in inhibition of fibrinolysis and in hemostasis. J Clin Invest 1982; 69: 536– 42.

37. Wang W., Boffa M.B., Bajzar L., Walker J.B., Nesheim M.E. A study of the mechanism of inhibition of fibrinolysis by activated thrombin-activable fibrinolysis inhibitor. J Biol Chem 1998; 273 (42): 27176–81. DOI: 10.1074/jbc.273.42.27176

38. Carr M.E., Hermans J. Size and density of fibrin fibers from turbidity. Macromolecules 1978; 11 (1): 46–50. DOI: 10.1021/ma60061a009

39. Avecilla S.T., Ferrell C., Chandler W.L., Reyes M. Plasma-diluted thrombin time to measure dabigatran concentrations during dabigatran etexilate therapy. Am J Clin Pathol 2012; 137 (4): 572–4. DOI: 10.1309/AJCPAU7OQM0SRPZQ

40. Tripodi A. Thrombin Generation Assay and Its Application in the Clinical Laboratory. Clin Chem 2016; 62 (5): 699–707. DOI: 10.1373/clinchem.2015.248625

41. Gribkova I.V., Lipets E.N., Rekhtina I.G., Bernakevich A.I., Ayusheev D.B., Ovsepyan R.A., еt al. The modification of the thrombin generation test for the clinical assessment of dabigatran etexilate efficiency. Sci Rep 2016; 6: 29242. DOI: 10.1038/srep29242

42. Matsumoto T., Shima M., Takeyama M., Yoshida K., Tanaka I., Sakurai Y., еt al. The measurement of low levels of factor VIII or factor IX in hemophilia A and hemophilia B plasma by clot waveform analysis and thrombin generation assay. J Thromb Haemost 2006; 4 (): 377–84. DOI: 10.1111/j.1538-7836.2006.01730.x

43. Balandina A.N., Koltsova E.M., Shibeko A.M., Kuprash A.D., Ataullakhanov F.I. Thrombodynamics: a new method to the diagnosis of hemostasis system disorders. Pediatr Hematol Immunopathol 2018; 17: 114–26.

44. Lipets E., Vlasova O., Urnova E., Margolin O., Soloveva A., Ostapushchenko O., еt al. Circulating contact-pathway-activating microparticles together with factors IXa and XIa induce spontaneous clotting in plasma of hematology and cardiologic patients. PLoS One 2014; 9: e87692.

45. Gracheva M.A., Urnova E.S., Sinauridze E.I., Tarandovskiy I.D., Orel E.B., Poletaev A.V., еt al. Thromboelastography, thrombin generation test and thrombodynamics reveal hypercoagulability in patients with multiple myeloma. Leuk Lymphoma 2015; 56: 3418–25.

46. Tarandovskiy I.D., Balandina A.N., Kopylov K.G., Konyashina N.I., Kumskova M.A., Panteleev M.A., Ataullakhanov F.I. Investigation of the phenotype heterogeneity in severe hemophilia A using thromboelastography, thrombin generation, and thrombodynamics. Thromb Res 2013; 131 (6): e274–80. DOI: 10.1016/j.thromres.2013.04.004

47. Balandina A.N., Serebriyskiy I.I., Poletaev A.V., Polokhov D.M., Gracheva M.A., еt аl. Thrombodynamics-A new global hemostasis assay for heparin monitoring in patients under the anticoagulant treatment. PLoS One 2018; 13 (6): e0199900. DOI: 10.1371/journal.pone.0199900

48. Dashkevich N.M., Ovanesov M.V., Balandina A.N., Karamzin S.S., Shestakov P.I., Soshitova N.P., еt al. Thrombin activity propagates in space during blood coagulation as an excitation wave. Biophys J 2012; 103 (10): 2233–40. DOI: 10.1016/j.bpj.2012.10.011

49. Kuprash A.D., Shibeko A.M., Vijay R., Nair S.C., Srivastava A., Ataullakhanov F.I., еt аl. Sensitivity and Robustness of Spatially Dependent Thrombin Generation and Fibrin Clot Propagation. Biophys J 2018; 115 (12): 2461–73. DOI: 10.1016/j.bpj.2018.11.009

50. Dashkevich N., Pivovarova E., Ataullakhanov F. Propagation of thrombin generation in space reveals difference in effects of heparin, dabigatran and rivaroxaban: CA37. J Thromb Haemost 2016; 14: 24–5.

51. Al Ghaithi R., Mori J., Nagy Z., Maclachlan A., Hardy L., Philippou H., et al. Evaluation of the Total Thrombus-Formation System (T-TAS): application to human and mouse blood analysis. Platelets 2019; 30 (7): 893–900. DOI: 10.1080/09537104.2018.1535704

52. Kleinegris M.-C.F., ten Cate H, ten CateHoek AJ. D-dimer as a marker for cardiovascular and arterial thrombotic events in patients with peripheral arterial disease. A systematic review. Thromb Haemost 2013; 110 (2): 233–43. DOI: 10.1160/TH13-01-0032

53. Soshitova N.P., Karamzin S.S., Balandina A.N., Fadeeva O.A., Kretchetova A.V., Galstian G.M., еt аl. Predicting prothrombotic tendencies in sepsis using spatial clot growth dynamics. Blood Coagul Fibrinolysis 2012; 23 (6): 498–507. doi: 10.1097/MBC.0b013e328352e90e

54. Estivals M., Pelzer H., Sie P., Pichon J., Boccalon H., Boneu B. Prothrombin fragment 1 + 2, thrombin-antithrombin III complexes and D-dimers in acute deep vein thrombosis: effects of heparin treatment. Br J Haematol 1991; 78 (3): 421–4. DOI: 10.1111/j.1365-2141.1991.tb04458.x

55. Lobastov K., Dementieva G., Soshitova N., Bargandzhiya A., Barinov V., Laberko L., Rodoman G. Utilization of the Caprini score in conjunction with thrombodynamic testing reduces the number of unpredicted postoperative venous thromboembolism events in patients with colorectal cancer. J Vasc surgery Venous Lymphat Disord 2020; 8: 31–41.


Для цитирования:


Шибеко А.М., Баландина А.Н., Пантелеев М.А. Новые направления в терапии и диагностике нарушений свертывания. Вопросы гематологии/онкологии и иммунопатологии в педиатрии. 2020;19(4):243-250. https://doi.org/10.24287/1726-1708-2020-19-4-243-250

For citation:


Shibeko A.M., Balandina A.N., Panteleev M.A. New approaches to the diagnosis and treatment of coagulation disorders. Pediatric Hematology/Oncology and Immunopathology. 2020;19(4):243-250. (In Russ.) https://doi.org/10.24287/1726-1708-2020-19-4-243-250

Просмотров: 55


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1726-1708 (Print)
ISSN 2414-9314 (Online)