Preview

Вопросы гематологии/онкологии и иммунопатологии в педиатрии

Расширенный поиск

Гранулематозное поражение кожи как проявление первичного иммунодефицитного состояния у детей

https://doi.org/10.24287/1726-1708-2020-19-4suppl-85-93

Полный текст:

Аннотация

Первичные иммунодефицитные состояния (ПИДС) представляют собой генетически гетерогенную группу заболеваний из более 400 нозологий. Традиционно ПИДС проявляются повышенной восприимчивостью к различного рода инфекционным заболеваниям. Тем не менее в последнее десятилетие все большее значение приобретают неинфекционные осложнения, связанные с дисрегуляцией и аутоиммунными расстройствами. У пациентов с ПИДС часто встречаются кожные проявления, они являются одним из признаков, позволяющих заподозрить диагноз иммунодефицита в раннем детстве. При этом одним из наименее изученных кожных проявлений ПИДС является гранулематозный дерматит. Данный обзор посвящен обобщению данных исследований патогенеза, методов диагностики и терапии гранулематозного дерматита у пациентов с различными ПИДС.

Об авторах

О. С. Селезнева
ГБУ РО «Областная детская клиническая больница»
Россия

врач-аллерголог-иммунолог отделения детской гематологии и онкологии с химиотерапией 

344014, Ростов-на-Дону, ул. 339-й Стрелковой Дивизии, 14 



А. Ю. Щербина
ФГБУ «Национальный медицинский исследовательский центр детской гематологии, онкологии и иммунологии им. Дмитрия Рогачева» Минздрава России
Россия
Москва


Список литературы

1. Иммунология детского возраста. Практическое руководство по детским болезням. Под ред. Щербины А.Ю., Пашанова Е.Д. М.: Медпрактика-М; 2006.

2. Picard C., Bobby Gaspar H., Al-Herz W., et al. International Union of Immunological Societies: 2017 primary immunodeficiency diseases committee report on inborn errors of immunity. J Clin Immunol 2018; 38 (1): 96–128.

3. Bousfiha A., Jeddane L., Picard C., et al. Human Inborn Errors of Immunity: 2019 Update of the IUIS Phenotypical Classification. J Clin Immunol 2020; 40 (1): 66–81.

4. Tangye S.G., Al-Herz W., Bousfiha A., et al. Human Inborn Errors of Immunity: 2019 Update on the Classification from the International Union of Immunological Societies Expert Committee [published correction appears in J Clin Immunol 2020; 40 (1): 24– 64.

5. Bousfiha A., Jeddane L., Picard C., et al. The 2017 IUIS Phenotypic Classification for Primary Immunodeficiencies. J Clin Immunol 2018; 38 (1): 129–43. DOI:10.1007/s10875-017-0465-8

6. Sharma D., Jindal A.K., Rawat A., Singh S. Approach to a Child with Primary Immunodeficiency Made Simple. Indian Dermatol Online J 2017; 8 (6): 391–405.

7. Kuzmenko N.B., Shcherbina A.Y. Classification of primary immunodeficiencies as a reflection of modern ideas about their pathogenesis and therapeutic approaches. Russian Journal of Pediatric Hematology and Oncology. 2017; 4 (3): 51–7. (In Russ.).

8. Продуктивное воспаление. Руководство для врачей. Под ред. Повзун С.А. С.-Пб.: спецЛит; 2018. 359 с.

9. Elbaz T., Esmat G. Hepatic and intestinal schistosomiasis: review. J Adv Res 2013; 4: 445–52.

10. Wilson M.S., Mentink-Kane M.M., Pesce J.T., Ramalingam T.R., Thompson R., Wynn T.A. Immunopathology of schistosomiasis. Immunol Cell Biol 2007; 85: 148–54.

11. Martín-Callizo C., Marcoval J., Penín R.M. Granulomatous Reactions to Red Tattoo Pigments: A Description of 5 Cases. Actas Dermosifiliogr 2015; 106 (7): 588–90.

12. Molina-Ruiz A.M., Requena L. Foreign body granulomas. Dermatol Clin 2015; 33 (3): 497–523.

13. Piette E.W., Rosenbach M. Granuloma annulare: pathogenesis, disease associations and triggers, and therapeutic options. J Am Acad Dermatol 2016; 75 (3): 467–79.

14. Mangold A.R., Cumsky H.J.L., Costello C.M., et al. Clinical and histopathologic features of paraneoplastic granuloma annulare in association with solid organ malignancies: A case-control study. J Am Acad Dermatol 2018; 79 (5): 913–20.e1.

15. Wanat K.A., Elenitsas R., Kim E.J., Rosenbach M. Granuloma annulare associated with cutaneous marginal zone lymphoma: a case linking a hematologic malignancy with granulomatous dermatitis. Am J Dermatopathol 2012; 34 (8): 844–6.

16. Valeyre D., Prasse A., Nunes H., et al. Sarcoidosis. Lancet 2014; 383: 1155–67.

17. Caso F., Galozzi P., Costa L., Sfriso P., Cantarini L., Punzi L. Autoinflammatory granulomatous diseases: from Blau syndrome and early-onset sarcoidosis to NOD2-mediated disease and Crohn's disease. RMD Open 2015; 1 (1): e000097.

18. Lo Schiavo A., Ruocco E., Gambardella A., O’Leary R.E., Gee S. Granulomatous dysimmune reactions (sarcoidosis, granuloma annulare, and others) on differently injured skin areas. Clin Dermatol 2014; 32 (5): 646–53.

19. Chua-Aguilera C.J., Möller B., Yawalkar N. Skin manifestations of rheumatoid arthritis, juvenile idiopathic arthritis, and spondyloarthritides. Clin Rev Allergy Immunol 2017; 53 (3): 371–93.

20. Fischer A., Provot J., Jais J.P., et al.; members of the CEREDIH French PID study group. Autoimmune and inflammatory manifestations occur frequently in patients with primary immunodeficiencies. J Allergy Clin Immunol 2017; 140 (5): 1388–93.e8.

21. Schuetz C., Huck K., Gudowius S., et al. An immunodeficiency disease with RAG mutations and granulomas. N Engl J Med 2008; 358: 2030–38

22. ESID Registry – Working Definitions for Clinical Diagnosis of PID https://esid.org/content/download/13053/372959/file/ESIDRegistry_ClinicalCriteria2014.pdf (accessed December 15, 2019)

23. Asai J. What is new in the histogenesis of granulomatous skin diseases? J Dermatol 2017; 44 (3): 297–303.

24. Terziroli Beretta-Piccoli B., Mainetti C., Peeters M. et al. Cutaneous Granulomatosis: a Comprehensive Review. Clinic Rev Allerg Immunol 2018; 54: 131–46.

25. Wilson J.L., Mayr H.K., Weichhart T. Metabolic Programming of Macrophages: Implications in the Pathogenesis of Granulomatous Disease. Front Immunol 2019; 10: 2265.

26. Girgis N.M., Gundra U.M., Ward L.N., et al. Ly6C(high) monocytes become alternatively activated macrophages in schistosome granulomas with help from CD4+ cells. PLoS Pathog 2014; 10: e1004080.

27. Silva D.A.A.D., Silva M.V.D., Barros C.C.O., et al. TNF-a blockade impairs in vitro tuberculous granuloma formation and down modulate Th1, Th17 and Treg cytokines. PLoS One 2018; 13 (3): e0194430.

28. Boros D.L. New perspectives on ancient granulomas. Front Immunol 2013; 4: 345. DOI: 10.3389/fimmu.2013.00345

29. Li X., Körner H., Liu X. Susceptibility to Intracellular Infections: Contributions of TNF to Immune Defense. Front Microbiol 2020; 11: 1643.

30. Timmermans W.M., van Laar J.A., van Hagen P.M., van Zelm M.C. Immunopathogenesis of granulomas in chronic autoinflammatory diseases. Clin Transl Immunol 2016; 5 (12): e118.

31. Huang Z., Luo Q., Guo Y., et al. Mycobacterium tuberculosis- induced polarization of human macrophage orchestrates the formation and development of tuberculous granulomas in vitro. PLoS ONE 2015; 10: e0129744.

32. Essandoh K., Li Y., Huo J., Fan G.C. MiRNA-Mediated Macrophage Polarization and its Potential Role in the Regulation of

33. Inflammatory Response. Shock 2016; 46 (2): 122–31.

34. Jetten N., Roumans N., Gijbels M.J., et al. Wound administration of M2-polarized macrophages does not improve murine cutaneous healing responses. PLoS One 2014; 9 (7): e102994.

35. Kumar R., Singh P., Kolloli A., et al. Immunometabolism of Phagocytes During Mycobacterium tuberculosis Infection. Front Mol Biosci 2019; 6: 105.

36. Wojtan P., Mierzejewski M., Osinska I., Domagala-Kulawik J. Macrophage polarization in interstitial lung diseases. Cent Eur J Immunol 2016; 41: 159–64.

37. Mattila J.T., Ojo O.O., Kepka-Lenhart D., et al. Microenvironments in tuberculous granulomas are delineated by distinct populations of macrophage subsets and expression of nitric oxide synthase and arginase isoforms. J Immunol 2013; 191:

38. –84.

39. Khan A., Singh V.K., Hunter R.L., Jagannath C. Macrophage heterogeneity and plasticity in tuberculosis. J Leukoc Biol 2019; 106 (2): 275–82.

40. Terziroli Beretta-Piccoli B., Mainetti C., Peeters M., et al. Cutaneous Granulomatosis: a Comprehensive Review. Clinic Rev Allerg Immunol 2018; 54: 131–46.

41. Wick MR. Granulomatous & histiocytic dermatitides. Semin Diagn Pathol. 2017;34(3):301-311.

42. Ito T., Connett J.M., Kunkel S.L., Matsukawa A. The linkage of innate and adaptive immune response during granulomatous development. Front Immunol 2015; 4: 10.

43. Norouzi S., Aghamohammadi A., Mamishi S., et al. Bacillus Calmette-Guérin (BCG) complications associated with primary immunodeficiency diseases. J Infect 2012; 64 (6): 543–54.

44. Clay H., Volkman H.E., Ramakrishnan L. Tumor necrosis factor signaling mediates resistance to mycobacteria by inhibiting bacterial growth and macrophage death. Immunity 2008; 29: 283–94

45. Ho H.E., Cunningham-Rundles C. Noninfectious Complications of Common Variable Immunodeficiency: Updated Clinical Spectrum, Sequelae, and Insights to Pathogenesis. Front Immunol 2020; 11: 149.

46. Kamphuis L.S., van Zelm M.C., Lam K.H., et al. Perigranuloma localization and abnormal maturation of B cells: emerging key players in sarcoidosis? Am J Respir Crit Care Med 2013; 187: 406–416.

47. Imadojemu S., Rosenbach M. Advances in Inflammatory Granulomatous Skin Diseases. Dermatol Clin 2019; 37 (1): 49–64.

48. Takeda K., Akira S. Toll-Like Receptors. Curr. Protoc. Immunol 2015; 109: 14.12.1–14.12.10. DOI: 10.1002/0471142735.im1412s109

49. Schmitt A., Volz A. Non-infectious granulomatous dermatoses. J Dtsch Dermatol Ges 2019; 17 (5): 518–33.

50. Holl-Ulrich K., Rose C. Nichtinfektiöse granulomatöse Entzündungen: Schwerpunkt Lunge und Haut [Non-infectious granulomatous inflammation: Focus on the lungs and skin]. Pathologe 2016; 37 (2): 172–82.

51. Moghaddas F., Masters S.L. The classification, genetic diagnosis and modelling of monogenic autoinflammatory disorders. Clin Sci (Lond) 2018; 132 (17): 1901–24. DOI: 10.1042/CS20171498

52. de Jesus A.A., Goldbach-Mansky R. Genetically defined autoinflammatory diseases. Oral Dis 2016; 22 (7): 591–604.

53. McDermott M.F., Aksentijevich I., Galon J., et al. Germline mutations in the extracellular domains of the 55 kDa TNF receptor, TNFR1, define a family of dominantly inherited autoinflammatory syndromes. Cell 1999; 97 (1): 133–44.

54. Gandhi C., Healy C., Wanderer A.A., Hoffman H.M. Familial atypical cold urticaria: description of a new hereditary disease. J Allergy Clin Immunol 2009; 124: 1245–50.

55. Hernández-Ostiz S., Xirotagaros G., Prieto-Torres L., et al. Enfermedades autoinflamatorias en dermatología pediátrica. Parte 2: síndromes histiocítico-macrofágicos y síndromes vasculopáticos. Acta Dermosifiliogr 2017; 108: 620–9.

56. Rose C.D., Martin T.M., Wouters C.H. Blau syndrome revisited. Curr Opin Rheumatol 2011; 23 (5): 411–8.

57. Figueras-Nart I., Mascaró J.M. Jr, Solanich X., Hernández- Rodríguez J. Dermatologic and Dermatopathologic Features of

58. Monogenic Autoinflammatory Diseases. Front Immunol 2019; 10: 2448.

59. Ombrello M.J., Remmers E.F., Sun G., et al. Cold urticaria, immunodeficiency, and autoimmunity related to PLCG2 deletions. N Engl J Med 2012; 366 (4): 330–8.

60. Zhou Q., Lee G.S., Brady J., et al. A hypermorphic missense mutation in PLCG2, encoding phospholipase Cγ2, causes a dominantly inherited autoinflammatory disease with immunodeficiency. Am J Hum Genet 2012; 91 (4): 713–20.

61. Novice T., Kariminia A., Del Bel K.L., et al. A Germline Mutation in the C2 Domain of PLCg2 Associated with Gain-of-Function Expands the Phenotype for PLCG2-Related Diseases. J Clin Immunol 2020; 40 (2): 267–76.

62. Parackova Z., Bloomfield M., Vrabcova P. et al. Mutual alteration of NOD2-associated Blau syndrome and IFNgR1 deficiency. J Clin Immunol 2010; 40: 165–78.

63. Aderibigbe O.M., Priel D.L., Lee C.-C.R., et al. Distinct cutaneous manifestations and cold-induced leukocyte activation associated with PLCG2 mutations. JAMA Dermatol 2015; 151: 627–34.

64. Szymanski A.M., Ombrello M.J. Using genes to triangulate the pathophysiology of granulomatous autoinflammatory disease: NOD2, PLCG2 and LACC1. Int Immunol 2018; 30 (5): 205–13.

65. Aderibigbe O.M., Priel D.L., Lee C.C., et al. Distinct Cutaneous Manifestations and Cold-Induced Leukocyte Activation Associated With PLCG2 Mutations. JAMA Dermatol 2015; 151 (6): 627–34.

66. Alizadeha A.A., Hamzeh-Mivehroud M., Haddad E., et al. Characterization of Novel Fragment Antibodies Against TNF-alpha Isolated Using Phage Display Technique. Iran J Pharm Res 2019; 18 (2): 759–71.

67. Sharapova S.O., Migas A., Guryanova I., et al. Late-onset combined immune deficiency associated to skin granuloma due to heterozygous compound mutations in RAG1 gene in a 14 years old male. Hum Immunol 2013; 74 (1): 18–22.

68. Walter J.E., Rucci F., Patrizi L., et al. Expansion of immunoglobulin-secreting cells and defects in B cell tolerance in Rag-dependent immunodeficiency. J Exp Med 2010; 207: 1541–54.

69. Schuetz C., Huck K., Gudowius S., et al. An immunodeficiency disease with RAG mutations and granulomas. N Engl J Med 2008; 358 (19): 2030–8.

70. Delmonte O.M., Villa A., Notarangelo L.D. Immune dysregulation in patients with RAG deficiency and other forms of combined immune deficiency. Blood 2020; 135 (9): 610–9. DOI: 10.1182/blood.2019000923

71. Deripapa E., Balashov D., Rodina Y., et al. Prospective Study of a Cohort of Russian Nijmegen Breakage Syndrome Patients Demonstrating Predictive Value of Low Kappa-Deleting Recombination Excision Circle (KREC) Numbers and Beneficial

72. Effect of Hematopoietic Stem Cell Transplantation (HSCT). Front Immunol 2017; 8: 807. DOI: 10.3389/fimmu.2017.00807

73. Mathieu A.L., Verronese E., Rice G.I., et al. PRKDC mutations associated with immunodeficiency, granuloma, and autoimmune regulator-dependent autoimmunity. J Allergy Clin Immunol 2015; 135 (6): 1578–88.e5. DOI: 10.1016/j.jaci.2015.01.040

74. Lakdawala N., Ferenczi K., Grant-Kels J.M. Granulomatous diseases: Kids are not just little people. Clin Dermatol 2017; 35 (6): 555–65.

75. Deripapa E., Balashov D., Rodina Y., et al. Prospective study of a cohort of Russian Nijmegen break age syndrome patients demonstrating predictive value of low kappa-deleting recombination excision circle (KREC) numbers and beneficial effect of hematopoietic stem cell transplantation (HSCT). Front Immunol 2017; 8: 807.

76. Chiam L.Y.T., Verhagen M.M.M., Haraldsson A., et al. Cutaneous granulomas in ataxia telangiectasia and other primary immunodeficiencies: reflection of inappropriate immune regulation? Dermatol 2011; 223: 13–9.

77. Minto H., Mensah K.A., Reynolds P.R., et al. A novel ATM mutation associated with elevated atypical lymphocyte populations, hyper-IgM, and cutaneous granulomas. Clin Immunol 2019; 200: 55–63. DOI: 10.1016/j.clim.2019.01.002

78. Szczawińska-Popłonyk A., Olejniczak K., Tąpolska-Jóźwiak K., et al. Cutaneous and systemic granulomatosis in ataxia-telangiectasia: a clinico-pathological study. Postepy Dermatol Alergol 2020; 37 (5): 760–5. DOI: 10.5114/ada.2020.100485

79. Petersen H.J., Smith A.M. The role of the innate immune system in granulomatous disorders. Front Immunol 2013; 4: 120. DOI: 10.3389/fimmu.2013.00120

80. Tuijnenburg P., Lango Allen H., Burns S.O., et al. Loss-of-function nuclear factor kappaB subunit 1 (NFKB1) variants are the most common monogenic cause of common variable immunodeficiency in Europeans. J Allergy Clin Immunol 2018; 142: 1285–96. DOI: 10.1016/j.jaci.2018.01.039

81. Lo B.., Zhang K., Lu W., et al. Autoimmune disease. Patients with LRBA deficiency show CTLA4 loss and immune dysregulation responsive to abatacept therapy. Science 2015; 349: 436–40. DOI: 10.1126/science.aaa1663

82. Charbonnier L.M., Janssen E., Chou J., et al. Regulatory T-cell deficiency and immune dysregulation, polyendocrinopathy, enteropathy, X-linked-like disorder caused by loss-of-function mutations in LRBA. J Allergy Clin Immunol 2015; 135: 217–27. DOI: 10.1016/j.jaci.2014.10.019

83. Coulter T.I., Chandra A., Bacon C.M., et al. Clinical spectrum and features of activated phosphoinositide 3-kinase delta syndrome: a large patient cohort study. J Allergy Clin Immunol 2017; 139: 597–606.e4. DOI: 10.1016/j.jaci.2016.06.021

84. Sebire N.J., Haselden S., Malone M., et al. Isolated EBV lymphoproliferative disease in a child with Wiskott-Aldrich syndrome manifesting as cutaneous lymphomatoid granulomatosis and responsive to anti-CD20 immunotherapy. J Clin Pathol 2003; 56 (7): 555–7. DOI: 10.1136/jcp.56.7.555

85. Neven B., Pérot P., Bruneau J., еt al. Cutaneous and Visceral Chronic Granulomatous Disease Triggered by a Rubella Virus Vaccine Strain in Children With Primary Immunodeficiencies. Clin Infect Dis 2017; 64 (1): 83–6.

86. Bodemer C., Sauvage V., Mahlaoui N., et al. Live rubella virus vaccine long-term persistence as an antigenic trigger of cutaneous granulomas in patients with primary immunodeficiency. Clin Microbiol Infect 2014; 20 (10): O656–63.

87. Neven B., Pérot P., Bruneau J., et al. Cutaneous and visceral chronic granulomatous disease triggered by a rubella virus vaccine strain in children with primary immunodeficiencies. Clin Infect Dis 2017; 64 (1): 83–6.

88. Buchbinder D., Hauck F., Albert M.H., et al. Rubella Virus-Associated Cutaneous Granulomatous Disease: a Unique Complication in Immune-Deficient Patients, Not Limited to DNA Repair Disorders. J Clin Immunol 2019; 39: 81–9.

89. Perelygina L., Plotkin S., Russo P., et al. Rubella persistence in epidermal keratinocytes and granuloma M2 macrophages in patients with primary immunodeficiencies. J Allergy Clin Immunol 2016; 138 (5): 1436–9.e11.

90. Perelygina L., Chen M.H., Suppiah S., et al. Infectious vaccine-derived rubella viruses emerge, persist, and evolve in cutaneous granulomas of children with primary immunodeficiencies. PLoS Pathog 2019; 15 (10): e1008080.

91. Barkai G., Somech R., Stauber T., et al. Bacille Calmette–Guerin (BCG) complications in children with severe combined immunodeficiency (SCID). Infect Dis (Lond) 2019; 51 (8): 585–92. DOI: 10.1080/23744235.2019.1628354

92. Laberko A., Yukhacheva D., Rodina Y., et al. BCG-Related Inflammatory Syndromes in Severe Combined Immunodeficiency After TCRab+/CD19+ Depleted HSCT. J Clin Immunol 2020; 40 (4): 625–36. DOI: 10.1007/s10875-020-00774-x

93. Franxman T.J., Howe L.E., Baker J.R. Infliximab for treatment of granulomatous disease in patients with common variable immunodeficiency. J Clin Immunol 2014; 34: 820–7. DOI: 10.1007/s10875-014-0079-3

94. Boursiquot J.N., Gérard L., Malphettes M., et al. Granulomatous Disease in CVID: Retrospective Analysis of Clinical Characteristics and Treatment Efficacy in a Cohort of 59 Patients. J Clin Immunol 2013; 33: 84–95. DOI: 10.1007/s10875-012-9778-9

95. Vignesh P., Rawat A., Singh S. An Update on the Use of Immunomodulators in Primary Immunodeficiencies. Clin Rev Allergy Immuno. 2017; 52 (2): 287–303.

96. Lin J.H., Liebhaber M., Roberts R.L., et al. Etanercept treatment of cutaneous granulomas in common variable immunodeficiency. J Allergy Clin Immunol 2006; 117: 878–82.

97. Perelygina L., Hautala T., Seppänen M., et al. Inhibition of rubella virus replication by the broad-spectrum drug nitazoxanide

98. in cell culture and in a patient with a primary immune deficiency. Antiviral Res 2017; 147: 58–66. DOI: 10.1016/j.antiviral.2017.09.019

99. Perelygina L., Buchbinder D., Dorsey M.J., et al. Outcomes for Nitazoxanide Treatment in a Case Series of Patients with Primary Immunodeficiencies and Rubella Virus-Associated Granuloma. J Clin Immunol 2019; 39 (1): 112–7. DOI: 10.1007/s10875-019-0589-0


Для цитирования:


Селезнева О.С., Щербина А.Ю. Гранулематозное поражение кожи как проявление первичного иммунодефицитного состояния у детей. Вопросы гематологии/онкологии и иммунопатологии в педиатрии. 2020;19(4):85-93. https://doi.org/10.24287/1726-1708-2020-19-4suppl-85-93

For citation:


Selezneva O.S., Shcherbina A.Yu. Granulomatous skin lesion as a manifestation of primary immunodeficiency in children. Pediatric Hematology/Oncology and Immunopathology. 2020;19(4):85-93. (In Russ.) https://doi.org/10.24287/1726-1708-2020-19-4suppl-85-93

Просмотров: 356


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1726-1708 (Print)
ISSN 2414-9314 (Online)