Preview

Вопросы гематологии/онкологии и иммунопатологии в педиатрии

Расширенный поиск

Молекулярные механизмы инициирования и модуляции аутоиммунного процесса микроорганизмами

https://doi.org/10.24287/1726-1708-2021-20-1-99-113

Полный текст:

Аннотация

Инфекционные агенты являются наиболее известными экологическими факторами, провоцирующими и модулирующими аутоиммунные заболевания. Молекулярные механизмы, лежащие в основе этого явления, включают молекулярную мимикрию, распространение эпитопов и обеспечение доступности криптических эпитопов аутоантигенов, активацию в присутствии свидетеля, эффект адъюванта, поликлональную активацию В-лимфоцитов и Т-лимфоцитов бактериальными суперантигенами. Непатогенные микроорганизмы и инфекционные агенты могут также защищать людей от аутоиммунных заболеваний посредством активации регуляторных Т-лимфоцитов и смещения равновесия между Т-лимфоцитами-хелперами классов 1 и 2 в пользу последних. Данное исследование одобрено независимым этическим комитетом и утверждено решением ученого совета ГНУ «Институт биоорганической химии НАН Беларуси». 

Об авторах

Е. П. Киселева
ГНУ «Институт биоорганической химии НАН Беларуси»
Беларусь

220141, Минск, ул. Академика В.Ф. Купревича, 5, корп. 2



К. И. Михайлопуло
ГНУ «Институт биоорганической химии НАН Беларуси»
Беларусь

Минск



Г. И. Новик
ГНУ «Институт микробиологии НАН Беларуси»
Беларусь

Минск



Н. Ф. Сорока
УО «Белорусский государственный медицинский университет»
Беларусь

Минск



Список литературы

1. Kivity S., Agmon-Levin N., Blank M., Shoenfeld Y. Infections and autoimmunity – friends or foes? Trends Immunol 2009; 30 (8): 409–14. DOI: 10.1016/j.it.2009.05.005

2. Ercolini A.M., Miller S.D. The role of infections in autoimmune disease. Clin Exp Immunol 2009; 155 (1): 1–15.

3. Ceccarelli F., Agmon-Levin N., Perricone C. Genetic factors of autoimmune diseases. J Immunol Res 2017; 2017: 2789242. DOI: 10.1155/2017/2789242

4. Mariani S.M. Genes and autoimmune diseases - a complex inheritance. Med Gen Med 2004; 6 (4): 18.

5. Ramos P.S, Shedlock A.M, Langefeld C.D. Genetics of autoimmune diseases: insights from population genetics. Journal of Human Genetics 2015; 60 (11): 657–64.

6. Taneja V., Mangalam A., David C.S. Chapter 27. Genetic predisposition to autoimmune diseases conferred by the major histocompatibility complex: utility of animal models. In: Rose N., Mackay I., editors. The Autoimmune Diseases, 5th edition. San Diego, CA: Academic Press/ Elsevier; 2014. Рp. 365–80. Доступно по: https://doi.org/10.1016/C2009-0-64586-4. Ссылка активна на 02.02.2021.

7. Wanstrat A., Wakeland E. The genetics of complex autoimmune diseases: nonMHC susceptibility genes. Nat Immunol 2001; 2 (9): 802–9.

8. Oldstone M.B. Molecular mimicry, microbial infection, and autoimmune disease: evolution of the concept. Curr Top Microbiol Immunol 2005; 296: 1–17. DOI: 10.1007/3-540-30791-5_1

9. Fujinami R.S., Oldstone M.B. Amino acid homology between the encephalitogenic site of myelin basic protein and virus: mechanism for autoimmunity. Science 1985; 230: 1043–5.

10. Trost B., Lucchese G., Stufano A., Bickis M., Kusalik A., Kanduc D. No human protein is exempt from bacterial motifs, not even one. Self Nonself 2010; 1 (4): 328–34. DOI: 10.4161/self.1.4.13315

11. Hebbes T.R., Turner C. H., Thorne A. W., Crane-Robinson C. A “minimal epitope” anti-protein antibody that recognizes a single modified amino acid. Mol Immunol 1989; 26 (9): 865–73.

12. Forsström B., Bisławska Axnäs B., Stengele K.-P., Bühler J., Albert T.J., Richmond T.A., et al. Proteome-wide epitope mapping of antibodies using ultra-dense peptide arrays. Mol Cell Proteomics 2014; 13: 1585–97.

13. Peng H.P., Lee K.H., Jian J.W., Yang A.S. Origins of specificity and affinity in antibody-protein interactions. Proc Natl Acad Sci USA 2014; 111: E2656–65.

14. Pahari S., Chatterjee D., Negi S., Kaur J., Singh B., Agrewala J.N. Morbid sequences suggest molecular mimicry between microbial peptides and self-antigens: a possibility of inciting autoimmunity. Front Microbiol 2017; 8: 1938.

15. Sanchez-Trincado J.L., Gomez-Perosanz M., Reche P.A. Fundamentals and methods for T- and B-cell epitope prediction. J Immunol Res 2017; 2017: 2680160. DOI: 10.1155/2017/2680160

16. Lafuente E.M., Reche P.A. Prediction of MHC-peptide binding: a systematic and comprehensive overview. Current Pharmaceutical Design 2009; 15 (28): 3209– 20.

17. Jensen P.E. Recent advances in antigen processing and presentation. Nat Immunol 2007; 8 (10): 1041–8.

18. Wilson D.B., Wilson D.H., Schroder K., Pinilla C., Blondelle S., Houghten R.A., Garcia K.C. Specificity and degeneracy of T cells. Mol Immunol 2004; 40 (14–15): 1047–55.

19. Wucherpfennig K.W. T cell receptor crossreactivity as a general property of T cell recognition. Mol Immunol 2004; 40 (14-15): 1009–17.

20. Petrova G., Ferrante A., Gorski J. Cross-reactivity of T cells and its role in the immune system. Crit Rev Immunol 2012; 32 (4): 349–72.

21. Bentzen A.K., Hadrup S.R. T-cell-receptor cross-recognition and strategies to select safe T-cell receptors for clinical translation. Immuno-Oncol Technol 2019; 2: 1–10.

22. Mason D. A very high level of crossreactivity is an essential feature of the T-cell receptor. Immunol Today 1998; 19: 395– 404.

23. Münz C., Lünemman J.D., Getts M.T., Miller S.D. Antiviral immune responses: triggers of or triggered by autoimmunity? Nat Rev Immunol 2009; 9 (4): 246–58.

24. Nino-Vasquez J., Allicotti G., Borras E., Wilson D.B., Valmori D., Simon R., et al. A powerful combination: the use of positional scanning libraries and biometrical analysis to identify cross-reactive T cell epitopes. Mol Immunol 2004; 40 (14–15): 1063–74.

25. Dhanda S.K., Gupta S., Vir P., Raghava G.P. Prediction of IL4 inducing peptides. Clin Dev Immunol 2013; 2013: 263952. DOI: 10.1155/2013/263952

26. Dhanda S.K., Vir P., Raghava G.P. Designing of interferon-gamma inducing MHC class-II binders. Biol Direct 2013; 8: 30.

27. Shahrizaila N., Yuki N. Guillain-Barré syndrome animal model: the first proof of molecular mimicry in human autoimmune disorder. J Biomed Biotechnol 2011; 2011: 829129.

28. Rees J.H., Soudain S.E., Gregson N.A., Hughes R.A.C. Campylobacter jejuni infection and Guillain-Barré syndrome. New Eng J Med 1995; 333 (21): 1374–9.

29. Schwimmbeck P.L, Dyrberg T., Drachman D., Oldstone M.B.A. Molecular mimicry and myasthenia gravis: an autoantigenic site of the acetylcholine receptor a-subunit that has biologic activity and reacts immunochemically with herpes simplex virus. J Clin Invest 1989; 84 (4): 1174–80.

30. Bachmaier K., Neu N., de la Maza L.M., Pal S., Hessel A., Penninger J.M. Chlamydia infections and heart disease linked through antigenic mimicry. Science 1999; 283 (5406): 1335–9.

31. Gangaplara A., Massilamany C., Brown D.M., Delhon G., Pattnaik A.K., Chapman N., et al. Coxsackievirus B3 infection leads to the generation of cardiac myosin heavy chain-alpha-reactive CD4 T cells in A/J mice. Clin Immunol 2012; 144 (3): 237–49.

32. Regner M., Lambert P.H. Autoimmunity through infection or immunization? Nat Immunol 2001; 2 (3): 185–8.

33. Filippi C.M., von Herrathi M.G. Viral trigger for type I diabetes. Pros and Cons Diabetes 2008; 57 (11): 2863–71.

34. Honeyman M.C., Stone N.L., Falk B.A., Nepom G., Harrison L.C. Evidence for molecular mimicry between human T cell epitopes in rotavirus and pancreatic islet autoantigens. J Immunol 2010; 184 (4): 2204–10.

35. Roep B.O., Hiemstra H.S., Schloot N.C., de Vries R.R.P, Chaudhuri A., Behan P.O., Drijfhout J.W. Molecular mimicry in type I diabetes: immune cross-reactivity between islet autoantigen and human cytomegalovirus but not coxsackie virus. Ann N Y Acad Sci 2002; 958: 163–5.

36. Fairweather D., Frisancho-Kiss S., Rose N.R. Viruses as adjuvants for autoimmunity: evidence from coxsackievirus-induced myocarditis. Rev Med Virol 2005; 15 (1): 17–27.

37. Getts M.T., Miller S.D. 99th Dahlem conference on infection, infl ammation and chronic inflammatory disorders: triggering of autoimmune diseases by infections. Clin Exp Immunol 2010; 160 (1): 15–21.

38. Root-Bernstein R. Rethinking molecular mimicry in rheumatic heart disease and autoimmune myocarditis: laminin, collagen IV, CAR, and B1AR as initial targets of disease. Front Pediatr 2014; 2: 85.

39. Bachmaier K., Neu N., de la Maza L.M., Pal S., Hessel A., Penninger J.M. Chlamydia infections and heart disease linked through antigenic mimicry. Science 1999; 283 (5406): 1335–9.

40. Ang C.W., Jacobs B.C., Laman J.D. The Guillain-Barre syndrome: a true case of molecular mimicry. Trends Immunol 2004; 25 (2): 61–6.

41. Rose N.R. The adjuvant effect in infection and autoimmunity. Clin Rev Allergy Immunol 2008; 34 (3): 279–82.

42. Pradhan V.D., Das S., Surve P., Ghosh K. Toll-like receptors in autoimmunity with special reference to systemic lupus erythematosus. Indian J Hum Genet 2012; 18 (2): 155–60.

43. Cunha-Neto E., Bilate A.M., Hyland K.V., Fonseca S.G., Kalil J., Engman D.M. Induction of cardiac autoimmunity in Chagas heart disease: a case for molecular mimicry. Autoimmunity 2006; 39 (1): 41–54.

44. Montes C.L., Acosta-Rodríguez E.V., Merino M.C., Bermejo D.A., Gruppi A. Polyclonal B cell activation in infections: infectious agents’ devilry or defense mechanism of the host? J Leukoc Biol 2007; 82 (5): 1027–32.

45. Bogner U., Wall J.R., Schleusener H. Cellular and antibody mediated cytotoxicity in autoimmune thyroid disease. Acta Endocrinologica 1987; 116 (1 Suppl): S133–8. 46. Russell J.H., Ley T.J. Lymphocyte-mediated cytotoxicity. Ann Rev Immunol 2002; 20 (6): 323–70.

46. Raúl V., Romána G., Murrayb J.C., Weiner L.M. Chapter 1. Antibody-dependent cellular cytotoxicity (ADCC). In: Ackerman M.E., Nimmerjahn F., editors. Antibody Fc. Linking adaptive and innate immunity. San Diego, CA, Elsevier/Academic Press; 2014. Рp. 1–27. Доступно по: https://doi.org/10.1016/C2011-0- 07091-6. Ссылка активна на 02.02.2021.

47. Varela J.C., Tomlinson S. Complement: an overview for the clinician. Hematol Oncol Clin North Am 2015; 29 (3): 409– 27.

48. Liblau R.S., Wong F.S., Mars L.T., Santamaria P. Autoreactive CD8 T cells in organ-specific autoimmunity: emerging targets for therapeutic intervention. Immunity 2002; 17 (1): 1–6.

49. Ma W.-T., Gao F., Gu K., Chen D.-K. The role of monocytes and macrophages in autoimmune diseases: a comprehensive review. Front Immunol 2019; 10: 1140.

50. Schleinitz N., Vély F., Harlé J.-R., Vivier E. Natural killer cells in human autoimmune diseases. Immunology. 2010; 131 (4): 451–8.

51. Lehmann P.V., Targoni O.S., Forsthuber T.G. Shifting T-cell activation thresholds in autoimmunity and determinant spreading. Immunol Rev 1998; 164 (1): 53–61.

52. Cunningham M.W. Rheumatic fever, autoimmunity and molecular mimicry: the streptococcal connection. Int Rev Immunol 2014; 33 (4): 314–29.

53. Cohen I.R., Young D.B. Autoimmunity, microbial immunity and the immunological homunculus. Immunol Today 1991; 12 (4): 105–10.

54. Fujinami R.S., von Herrath M.G., Christen U., Whitton J.L. Molecular mimicry, bystander activation, or viral persistence: infections and autoimmune disease. Clin Microbiol Rev 2006; 19 (1): 80–94.

55. Pane J.A., Coulson B.S. Lessons from the mouse: potential contribution of bystander lymphocyte activation by viruses to human type 1 diabetes. Diabetologia 2015; 58 (6): 1149 –59.

56. Lee H.-G., Lee J.-U., Kim D.-H., Lim S., Kang I., Choi J.-M. Pathogenic function of bystander-activated memory-like CD4+ T cells in autoimmune encephalomyelitis. Nature Communications 2019; 10: 709.

57. Nogai A., Siffrin V., Bonhagen K., Pfueller C.F., Hohnstein T., Volkmer-Engert R., et al. Lipopolysaccharide injection induces relapses of experimental autoimmune encephalomyelitis in nontransgenic mice via bystander activation of autoreactive CD4 cells. J Immunol 2005; 175 (2): 959–66.

58. Kawai T., Akira S. The roles of TLRs, RLRs and NLRs in pathogen recognition. Int Immunol 2009; 21 (4): 317–37.

59. El-Zayat S.R., Sibaii H., Mannaa F.A. Tolllike receptors activation, signaling, and targeting: an overview. Bull Natl Res Cent 2019; 43 (1): 187.

60. Chiffoleau E. C-type lectin-like receptors as emerging orchestrators of sterile inflammation represent potential therapeutic targets. Front Immunol 2018; 9: 227.

61. Kim Y.K., Shin J.S., Nahm M.H. NOD-like receptors in infection, immunity, and diseases. Yonsei Med J 2016; 57 (1): 5–14.

62. Loo Y.-M., Gale M. Immune signaling by RIG-I-like receptors. Immunity 2011; 34 (5): 680–92.

63. Lang K.S., Recher M., Junt T., Navarini A.A., Harris N.L., Freigang S., et al. Toll-like receptor engagement covers T-cell autoreactivity into overt autoimmune disease. Nat Med 2005; 11 (2): 138–45.

64. Haas A., Zimmermann K., Oxenius A. Antigen-dependent and -independent mechanisms of T and B cell hyperactivation during chronic HIV-1 infection. J Virol 2011; 85 (23): 12102–13.

65. Shoenfeld Y., Agmon-Levin N. ‘ASIA’-Autoimmune/inflammatory syndrome induced by adjuvants. J Autoimmun 2011; 36: 4–8.

66. Hawkes D., Benhamu J., Sidwell T., Miles R., Dunlop R.A. Revisiting adverse reactions to vaccines: a critical appraisal of autoimmune syndrome induced by adjuvants (ASIA). J Autoimmun 2015; 59: 77–84.

67. Soriano A., Nesher G., Shoenfeld Y. Predicting post-vaccination autoimmunity: Who might be at risk? Pharmacol Res 2015; 92: 18–22.

68. van der Laan J.W., Gould S., Tanir J.Y. Safety of vaccine adjuvants: focus on autoimmunity. Vaccine 2015; 33 (11): 1507–14.

69. Schiff enbauer J. Superantigens and their role in autoimmune disorders. Archivum Immunologiae et Therapiae Experimentalis 1999; 47 (1): 17–24.

70. Rott O., Charreire J., Cash E. Influenza A virus hemagglutinin is a B cell-superstimulatory lectin. Med Microbiol Immunol 1996; 184 (4): 185–93.

71. Ram M. The putative protective role of hepatitis B virus (HBV) infection from autoimmune disorders. Autoimmunity 2008; 7 (8): 621–5.

72. Viau M., Longo N.S., Lipsky P.E., Björck L., Zouali M. Specific in vivo deletion of B-cell subpopulations expressing human immunoglobulins by the B-cell superantigen protein L. Infect Immun 2004; 72 (6): 3515–23.

73. Wikström M., Sjöbring U., Drakenberg T., Forsén S., Björck L. Mapping of the immunoglobulin light chain-binding site of protein L. J Mol Biol 1995; 250 (2): 128–33.

74. Nilson B.H., Solomon A., Björck L., Akerström B. Protein L from Peptostreptococcus Magnus binds to the kappa light chain variable domain. J Biol Chem 1992; 267 (4): 2234–9.

75. Watanabe K., Kumada H., Yoshimura F., Umemoto T. The induction of polyclonal B-cell activation and interleukin-1 production by the 75-kDa cell surface protein from Porphyromonas gingivalis in mice. Arch Oral Biol 1996; 41 (8–9): 725– 31.

76. Murphy K., Travers P., Walport M. Сhapter 5. Antigen presentation to T-lymphocytes. In: Murphy K., Travers P., Walport M., editors. Janeway's Immunobiology. 7th edition. New York. USA: Garland Science; 2008. Pp. 206–7. Доступно по: https://www.ncbi.nlm.nih.gov/books/NBK10766. Ссылка активна на 02.02.2021.

77. Cordeiro-Da-Silva A., Borges M.C., Guilvard E., Ouaissi A. Dual role of the Leishmania major ribosomal protein S3a homologue in regulation of T- and B-cell activation. Infect Immun 2001; 69 (11): 6588–96.

78. Domiati-Saad R., Attrep J.F., Brez inschek H.P., Cherrie A.H., Karp D.R., Lipsky P.E. Staphylococcal enterotoxin D functions as a human B-cell superantigen by rescuing VH4-expressing B cells from apoptosis. J Immunol 1996; 156 (10): 3608–20.

79. Domiati-Saad R., Lipsky P.E. Staphylococcal enterotoxin A induces survival of VH3-expressing human B cells by binding to the VH region with low affinity. J Immunol 1998; 161 (3): 1257–66.

80. Karray S., Juompan L., Maroun R.C., Isenberg D., Silverman G.J., Zouali M. Structural basis of the gp120 superantigen-binding site on human immunoglobulins. J Immunol 1998; 161 (12): 6681–8.

81. Chung N.P.Y., Matthews K., Klasse P.J., Sanders R.W., Moore J.P. HIV-1 gp120 impairs the induction of B cell responses by TLR9-activated plasmacytoid dendritic cells. J Immunol 2012; 189 (11): 5257–65.

82. Dörner T., Giesecke C., Lipsky P.E. Mechanisms of B cell autoimmunity in SLE. Arthritis Research and Therapy 2011; 13 (5): 243.

83. Proft T., Fraser J.D. Bacterial superantigens. Clin Exp Immunol 2003; 133 (3): 299–306. 85. Schiffenbauer J. Superantigens and their role in autoimmune disorders. Arch Immunol Ther Ex 1999; 47 (1): 17–24.

84. Strachan D. Family size, infection and atopy: The first decade of the “hygiene hypothesis”. Thorax 2000; 55 (Suppl 1): 2–5. 87. Rook G.A.W. Microbes, immunoregulation, and the gut. Gut 2005; 54 (3): 317– 20.

85. Kiseleva E.P., Novik G.I. Probiotics as immunomodulators: substances, mechanisms and therapeutic benefits. In: Mendez-Vilas A., editor. Microbial pathogens and strategies for combating them: science, technology and education. Badajoz, Spain: Formatex Research Center; 2013. 3: 1864–76. Доступно по: https://api.semanticscholar.org/CorpusID:42172455. Ссылка активна на 02.02.2021.


Для цитирования:


Киселева Е.П., Михайлопуло К.И., Новик Г.И., Сорока Н.Ф. Молекулярные механизмы инициирования и модуляции аутоиммунного процесса микроорганизмами. Вопросы гематологии/онкологии и иммунопатологии в педиатрии. 2021;20(1):99-113. https://doi.org/10.24287/1726-1708-2021-20-1-99-113

For citation:


Kiseleva E.P., Mikhailopulo K.I., Novik G.I., Soroka N.F. Molecular mechanisms of induction and acceleration of autoimmunity by microorganisms. Pediatric Hematology/Oncology and Immunopathology. 2021;20(1):99-113. (In Russ.) https://doi.org/10.24287/1726-1708-2021-20-1-99-113

Просмотров: 178


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1726-1708 (Print)
ISSN 2414-9314 (Online)