Preview

Вопросы гематологии/онкологии и иммунопатологии в педиатрии

Расширенный поиск

Редкий ОВИН-подобный фенотип при аутоиммунном лимфопролиферативном синдроме

https://doi.org/10.24287/1726-1708-2021-20-1-170-179

Полный текст:

Аннотация

Аутоиммунный лимфопролиферативный синдром – первичный иммунодефицит, вызванный нарушением FAS-опосредованного апоптоза, обычно сопровождающийся гипергаммаглобулинемией. Тем не менее в данной когорте пациентов случаются исключения, затрудняющие своевременную диагностику, в частности, может наблюдаться симптоматика, напоминающая общую вариабельную иммунную недостаточность. В данной статье мы описываем редкий случай агаммаглобулинемии у пациентки с генетически подтвержденным аутоиммунным лимфопролиферативным синдромом. Родители пациентки дали согласие на использование информации, в том числе фото ребенка, в научных исследованиях и публикациях. 

Об авторах

О. А. Швец
ФГБУ «Национальный медицинский исследовательский центр детской гематологии, онкологии и иммунологии им. Дмитрия Рогачева» Минздрава России
Россия

канд. мед. наук, врач-аллергологиммунолог отделения иммунологии,

117997, Москва, ул. Саморы Машела, 1



Е. А. Деордиева
ФГБУ «Национальный медицинский исследовательский центр детской гематологии, онкологии и иммунологии им. Дмитрия Рогачева» Минздрава России
Россия

Москва



М. А. Курникова
ФГБУ «Национальный медицинский исследовательский центр детской гематологии, онкологии и иммунологии им. Дмитрия Рогачева» Минздрава России
Россия

Москва



Д. Е. Першин
ФГБУ «Национальный медицинский исследовательский центр детской гематологии, онкологии и иммунологии им. Дмитрия Рогачева» Минздрава России
Россия

Москва



А. М. Киева
ФГБУ «Национальный медицинский исследовательский центр детской гематологии, онкологии и иммунологии им. Дмитрия Рогачева» Минздрава России
Россия

Москва



А. В. Пшонкин
ФГБУ «Национальный медицинский исследовательский центр детской гематологии, онкологии и иммунологии им. Дмитрия Рогачева» Минздрава России
Россия

Москва



Н. С. Сметанина
ФГБУ «Национальный медицинский исследовательский центр детской гематологии, онкологии и иммунологии им. Дмитрия Рогачева» Минздрава России
Россия

Москва



А. Ю Щербина
ФГБУ «Национальный медицинский исследовательский центр детской гематологии, онкологии и иммунологии им. Дмитрия Рогачева» Минздрава России
Россия

Москва



Список литературы

1. Teachey D.T., Seif A.E., Grupp S.A. Advances in the management and understanding of autoimmune lymphoproliferative syndrome (ALPS). Br J Haematol 2010; 148 (2): 205–16.

2. Sneller M.C., Wang J., Dale J.K., Strober W., Middelton L.A., Choi Y., et al. Clinical, immunologic, and genetic features of an autoimmune lymphoproliferative syndrome associated with abnormal lymphocyte apoptosis. Blood 1997; 89 (4): 1341–8.

3. Dowdell K.C., Niemela J.E., Price S., Davis J., Hornung R.L., Oliveira J.B., et al. Somatic FAS mutations are common in patients with genetically undefined autoimmune lymphoproliferative syndrome. Blood 2010; 115 (25): 5164–¬9.

4. Oliveira J.B., Bleesing J.J., Dianzani U., Fleisher T.A., Jaffe E.S., Lenardo M.J., et al. Revised diagnostic criteria and classification for the autoimmune lymphoproliferative syndrome (ALPS): report from the 2009 NIH International Workshop. Blood 2010; 116 (14): e35–40.

5. Holzelova E., Vonarbourg C., Stolzenberg M.C., Arkwright P.D., Selz F., Prieur A.M., et al. Autoimmune lymphoproliferative syndrome with somatic FAS mutations. N Engl J Med 2004; 351: 1409–18.

6. Швец О.А., Дерипапа Е.В., Захарова В.В., Абрамов Д.С., Деордиева Е.А., Викторова Е.А. и др. Клинико-лабораторные особенности пациентов с аутоиммунным лимфопролиферативным синдромом. Вопросы гематологии/онкологии и иммунопатологии в педиатрии 2017; 16 (4): 27–34.

7. Del-Rey M., Ruiz-Contreras J., Bosque A., Calleja S., Gomez-Rial J., Roldan E., et al. A homozygous FAS ligand gene mutation in a patient causes a new type of autoimmune lymphoproliferative syndrome. Blood 2006; 108: 1306.

8. Wang J., Zheng L., Lobito A., Chan F.K.-M., Dale J., Sneller M., et al. Inherited human caspase 10 mutations underlie defective lymphocyte and dendritic cell apoptosis in autoimmune lymphoproliferative syndrome type II. Cell 1999; 98: 47.

9. Tangye S.G., Al-Herz W., Bousfiha A., Chatila T., Cunningham-Rundles C., Etzioni A., et al. Humman Inborn Errors of Immunity: 2019 Update on the Classification from the International Union of Immunological Societies Experts. J Clin Immunol 2020; 40: 24–64.

10. Швец О.А., Дерипапа Е.В., Абрамова И.Н., Викторова Е.А., Родина Ю.А., Деордиева Е.А. и др. Эффективность сиролимуса в терапии аутоиммунного лимфопролиферативного синдрома. Вопросы гематологии/онкологии и иммунопатологии в педиатрии. 2018; 17 (1): 46–53.

11. Green D.R., Droin N., Pinkoski M. Activation-induced cell death in T-cells. Immunol Rev 2003; 193: 70–81.

12. Matson D.R., Yang D.T. Autoimmune Lympoproliferative syndrome. Arch Pathol Lab Med 2020; 144 (2): 245–51.

13. Volkl S., Rensing-Ehl A., Allg¨auer A., Schreiner E., Lorenz M.R., Rohr J., et al. Hyperactive mTOR pathway promotes lymphoproliferation and abnormal differentiation in autoimmune lymphoproliferative syndrome. Blood 2016; 128 (2): 227–38.

14. Fisher G.H., Rosenberg F.J., Straus S.E., Dale J.K., Middleton L.A., Lin A.Y., et al. Dominant interfering Fas gene mutations impair apoptosis in a human autoimmune lymphoproliferative syndrome. Cell 1995; 81 (6): 935–46.

15. Fleisher T.A., Oliveira J.B. Monogenic defects in lymphocyte apoptosis. Curr Opin Allergy Clin Immunol 2012; 12 (6): 609–15.

16. Швец О.А. Аутоиммунный лимфопролиферативный синдром у детей: стратегия диагностики и лечения на основе клинико-генетической характеристики. Дис. … канд. мед. наук. М.; 2018. http://www.fnkc.ru/diss-sovet/dissday/shvets_o/diss.pdf

17. Neven B., Magerus-Chatinet A., Florkin B., Gobert D., Lambotte O., De Somer L., et al. A survey of 90 patients with autoimmune lymphoproliferative syndrome related to TNFRSF6 mutation. Blood 2011; 118: 4798–807.

18. Hauck F., Magerus-Chatinet A., Vicca S., Rensing-Ehl A., Roesen-Wolff A., Roesler J., et al. Somatic loss of heterozygosity, but not haploinsuffi ciency alone, leads to full¬blown autoimmune lymphoproliferative syndrome in 1 of 12 family members with FAS start codon mutation. Clin. Immunol 2013; 147 (1): 61–8.

19. Kanegane H., Vilela M.M., Wang Y., Futatani T., Matsukura H., Miyawaki T. Autoimmune lymphoproliferative syndrome presenting with glomerulonephritis. Pediatr Nephrol 2003; 18 (5): 454–6.

20. Mu K., Zhang J., Gu Y., Li H., Wang H. Autoimmune lymphoproliferative syndrom with Cryptococcus infection. J Clin Immunol 2019; 39 (7): 77–9.

21. Oksenhendler E., Spaan A.N., Neven B., Stolzenberg M.-C., Fusaro M., Casanova J.-L. Autoimmune lymphoproliferative syndrome presenting with invasive Streptococcus pneumoniae infection. J Clin Immunol 2020; 40 (3): 543–6.

22. Neven B., Bruneau J., Stolzenberg M.-C., Meyts I., Magerus-Chatinet A., Moens L., et al. Defective anti-polysacharide response and splenic marginal zone disorganization in ALPS patients. Blood 2014; 124 (10): 1597–609.

23. Price S., Shaw P.A., Seitz A., Joshi G., Davis J., Niemela J.E., et al. Natural history of autoimmune lymphoproliferative syndrome associated with FAS gene mutations. Blood 2014; 123 (13): 1989–99.

24. Aspinall A., Pinto A., Auer I.A., Bridges P., Luider J., Dimnik L., et al. Ientifi cation of new Fas mutations in a patient with autoimmune lymphoproliferative syndrome (ALPS) and eosinophilia. Blood Cells Mol Dis 1999; 25 (3–4): 227–38.

25. Kim Y.-J., Dale J.K., Noel P., Brown M.R., Nutman T.B., Straus S.E., et al. Eosinophilia is associated with a higher mortality rate among patients with autoimmune lymphoproliferative syndrome. Am J Hematol 2007; 82 (7): 615–24.

26. ESID Registry – Working Definitions for Clinical Diagnosis of PID. Available at: http://esid.org/Working Parties/Registry/Diagnosis criteria.

27. Bleesing J.J., Brown M.R., Straus S.E., Dale J.K., Seigel R.M., Johnson M., et al. Immunophenotypic profiles in families with autoimmune lymphoproliferative syndrome. Blood 2001; 98 (8): 2466–73.

28. Chun H.J., Zheng L., Ahmad M., Wang J., Speirs C.K., Seigel R.M., et al. Pleotropic defects in lymphocyte activation caused by caspase-8 mutations lead to human immunodeficiency. Nature 2002; 419 (6905): 395–9.

29. Rieux-Laucat F., Blachère S., Danielan S., De Villartay J.P., Oleastro M., Solary E., et al. Lymphoproliferative syndrome with autoimmunity: A possible genetic basis for dominant expression of the clinical manifestations. Blood 1999; 94 (8): 2575–82.

30. Rensing-Ehl A., Warnatz K., Fuchs S., Schlesier M., Salzer U., Draeger R., et al. Clinical and immunological ov rlap between autoimmune lymphoproliferative syndrome and common variable immunodeficiency. Clin Immunol 2010; 137 (3): 357–65.

31. Narra M.B., Abdou N.I. Autoimmune lymphoproliferative syndrome in a patient with common variable immunodeficiency: dichotomy of apoptosis. Ann Allergy Asthma Immunol 2007; 98 (6): 585–8.

32. Bonilla F.A., Barlan I., Chapel H., Costa-Carvalho B.T., Cunningham-Rundles C., de la Moren M.T., et al. International Consensus Document (ICON): Common variable immunodefi ciency disorders. J Allergy Clin Immunol Pract 2016; 4: 38–59.

33. Picard C., Bobby Gaspar H., Al-Herz W., Bousfiha А., Casanova J.-L., Chatila T., et al. International Union of Immunological Societies: 2017 Primary Immunodeficiency Diseases Committee Report on Inborn Errors of Immunity. J Clin Immunol 2018; 38: 96–128.

34. Berglund L.J., Wong S.W.J., Fulcher D.A. B-cell maturation defects in common variable immunodeficiency and association with clinical features. Pathology 2008; 40 (3): 288–94.

35. Seidel M.G., Kindle G., Gathmann B., Quinti I., Buckland M., van Montfrans J., et al. The European Society for Immunodeficiencies (ESID) Registry Working Defi nitions for the Clinical Diagnosis of Inborn Errors of Immunity. J Allergy Clin Immunol Pract 2019; 7 (6): 1763–70.

36. Bogaert D.J., Dullaers M., Lambrecht B.N., Vermaelen K.Y., De Baere E., Haerynck F. Genes associated with common variable immunodeficiency: one diagnosis to rule them all? J Med Genet 2016; 53: 575–90.

37. de Valles-Ibanez G., Esteve-Sole A., Piquer M., González-Navarro E.A., Hernandez-Rodriguez J., Laayouni H., et al. Evaluating the genetics of common variable immunodeficiency: monogenetic model and beyond. Front Immunol 2018; 9: 636.

38. van Montfrans J.M., Hoepelman A.I., Otto S., van Gijn M., van de Corput L., de Weger R.A., et al. CD27 deficiency is associated with combined immunodeficiency and persistent symptomatic EBV viremia. J Allergy Clin Immunol 2012; 129: 787–93.

39. Castigli E., Wilson S.A., Garibyan L., Rachid R., Bonilla F., Schneider L., Geha R.S. TACI is mutant in common variable immunodeficiency and IgA deficiency. Nat Genet 2005; 37: е829–34.

40. Salzer U., Chapel H.M., Webster A.D., Pan-Hammarström Q., Schmitt-Graeff A., Schlesier M., et al. Mutations in TNFRSF13B encoding TACI are associated with common variable immunodeficiency in humans. Nat Genet 2005; 37: 820–8.

41. Tuijnenburg P., Lango Allen H., Burns S.O., Greene D., Jansen M.H., Staples E., et al. Loss-of-function nuclear factor kappaB subunit 1 (NFKB1) variants are the most common monogenic cause of common variable immunodeficiency in Europeans. J Allergy Clin Immunol 2018; 142 (4): 1285–96.

42. Chen K., Coonrod E.M., Kumanovics A., Franks Z.F., Durtschi J.D., Margraf R.L., et al. Germline mutations in NFKB2 implicate the noncanonical NF-kappaB pathway in the pathogenesis of common variable immunodefi ciency. Am J Hum Genet 2013; 93: 812–24.

43. Angulo I., Vadas O., Garcon F., Banham-Hall E., Plagnol V., Leahy T.R., et al. Phosphoinositide 3-kinase delta gene mutation predisposes to respiratory infection and airway damage. Science 2013; 342: 866–71.

44. Lucas C.L., Kuehn H.S., Zhao F., Niemela J.E., Deenick E.K., Palendira U., et al. Dominant-activating germline mutations in the gene encoding the PI(3)K catalytic subunit p110delta result in T cell senescence and human immunodeficiency. Nat Immunol 2014; 15: 88–97.

45. Rae W. Indications to Epigenetic Dysfunction in the Pathogenesis of Common Variable Immunodeficiency. Arch Immunol Ther Exp 2017; 65: 101–10.

46. Rodriguez-Cortez V.C., Del Pino-Molina L., Rodriguez-Ubreva J., Ciudad L., Gomez-Cabrero D., Company C., et al. Monozygotic twins discordant for common variable immunodeficiency reveal impaired DNA demethylation during naive-to-memory B-cell transition. Nature communications 2015; 6: 7335.

47. Heo J.B., Lee Y.S., Sung S. Epigenetic regulation by long noncoding RNAs in plants. Chromosome Res 2013; 21 (6–7): 685–93.

48. Patuzzo G., Barbieri A., Tinazzi E., Veneri D., Argentino G., Moretta F., et al. Autoimmunity and infection in common variable immunodefi ciency (CVID). Autoimmun Rev 2016; 15: 877–82.

49. Chapel H., Lucas M., Lee M., Bjorkander J., Webster D., Grimbacher B., et al. Common variable immunodefi ciency disorders: division into distinct clinical phenotypes. Blood 2008; 112: 277–86.

50. Gathmann B., Mahlaoui N., Ceredih, Gérard L., Oksenhendler E., Warnatz K., et al. Clinical picture and treatment of 2212 patients with common variable immunodeficiency. J Allergy Clin Immunol 2014; 134: 116–26.

51. Wehr C., Kivioja T., Schmitt C., Ferry B., Witte T., Eren E., et al. The EUROclass trial: defining subgroups in common variable immunodeficiency. Blood 2008; 111: 77–85.

52. Resnick E.S., Moshier E.L., Godbold J.H., Cunningham-Rundles C. Morbidity and mortality in common variable immune deficiency over 4 decades. Blood 2012; 119: 1650–7.

53. Abolhassani H., Amirkashani D., Parvan eh N., Mohammadinejad P., Gharib В., Shahinpour S., et al. Autoimmune phenotype in patients with common variable immunodeficiency. J Invest Allergol Clin Immunol 2013; 23: 323–9.

54. Ramirez-Vargas N., Arablin-Oropeza S.E., Mojica-Martinez D., Yamazaki-Nakashimada M.A., de la Luz GarcíaCruz M.,Terán-Juárez L.M., et al. Clinical and immunological features of common variable immunodefi ciency in Mexican patients. Allergol Immunopathol (Madr) 2014; 42: 235–40.

55. Xiao X., Miao Q., Chang C., Gershwin M.E., Ma X. Common variable immunodeficiency and autoimmunity: an inconvenient truth. Autoimmun Rev 2014; 13: 858–64.

56. Megna M., Pecoraro A., Balato N., Villani А., Crescenzi L., Balato A., Spadaro G. Psoriasis in a cohort of patients with common variable immunodefi ciency. Br J Dermatol 2019; 180: 935–6.

57. Kiaee F., Azizi G., Rafi emanesh H., Zainaldain H., Sadaat Rizvi F., et al. Malignancy in common variable immunodeficiency: a systematic review and meta-analysis. Expert Rev Clin Immunol 2019; 15 (10): 1105–13.

58. Carter C.R., Aravind G., Smalle N.L., Cole J.Y., Savic S., Wood P.M. CVID patients with autoimmunity have elevated T cell expression of granzyme B and HLA-DR and reduced levels of Treg cells. J Clin Pathol 2013; 66: 146–50.

59. Warnatz K., Voll R.E. Pathogenesis of autoimmunity in common variable immunodeficiency. Front Immunol 2012; 3: 210.

60. Farrokhi A.S., Aghamohammadi A., Pourhamdi S., Mohammadinejad P., Abolhassani H., Moazzeni S.M. Evaluation of class switch recombination in B lymphocytes of patients with common variable immunodeficiency. J Immunol Methods 2013; 394: 94–9.

61. Agarwal S., Cunningham-Rundles C. Autoimmunity in Common Variable Immunodeficiency. Ann Allergy Asthma Immunol 2019; 123: 454–60.

62. Baldovino S., Montin D., Martino S., Sciascia S., Menegatti E., Roccatello D. Common variable immunodeficiency: crossroads between infections, inflammation and autoimmunity. Autoimmun Rev 2013; 12 (8): 796–801.

63. Richardson C.T., Slack M.A., Dhillon G., Marcus C.Z., Barnard J., Palanichamy A., et al. Failure of B Cell Tolerance in CVID. Front Immunol 2019; 10: 2881.

64. Caminha I., Fleisher T.A., Hornung R.L., Dale J.K., Niemela J.E., Price S., et al. Using biomarkers to predict the presence of FAS mutations in patients with features of the autoimmune lymphoproliferative syndrome. J Allergy Clin Immunol 2010; (125): 946–9.

65. Roberts C.A., Ayers L., Bateman E.A.L., Sadler R., Magerus-Chatinet A., Rieux-Laucat F., et al. Investigation of common variable immunodeficiency patients and healthy individuals using autoimmune lymphoproliferative syndrome biomarkers. Hum Immunol 2013; 74 (12): 1531–5.

66. Salehzadeh M., Aghamohammadi A., Rezaei N. Evaluation of immunoglobulin levels and infection rate in patients with common variable immunodeficiency after immunoglobulin replacement therapy. Microbiol Immunol Infect 2010; 43 (1): 11–7.

67. Gardulf A., Abolhassani H., Gustafson R., Eriksson L.E., Hammarstrom L. Predictive markers for humoral influenza vaccine response in patients with common variable immunodeficiency. J Allergy Clin Immunol 2018; 142 (6): 1922–31.

68. Wehr C., Gennery A.R., Lindemans C., Schulz A., Hoenig M., Marks R., et al. Multicenter experience in hematopoietic stem cell transplantation for serious complications of common variable immunodeficiency. J Allergy Clin Immunol 2015; 135: 988–97.

69. Rao V.K., Oliveira J.B. How I treat autoimmune lymphoproliferative syndrome. Blood 2011; 118 (22): 5741–51.

70. Bleesing J.J., Straus S.E., Fleisher T.A. Autoimmune lymphoproliferative syndrome. A human disorder of abnormal lymphocyte survival. Pediatr Clin North Am 2000; 47 (6): 1291–310.

71. Teachey D.T., Greiner R., Seif A., Attiyeh E., Bleesing G., Choi J., et al. Treatment with sirolimus results in complete responses in patients with autoimmune lymphoproliferative syndrome. Br J Haematol 2009; 145 (1): 101–6.

72. Klemann C., Esquivel M., Magerus-Chatinet A., Lorenz M.R., Fuchs I., Neveux N., et al. Evolution of disease activity and biomarkers on and off rapamycin in 28 patients with autoimmune lymphoproliferative syndrome. Haematologica 2017; 102 (2): e52–6.

73. Rubin L.G., Levin M.J., Ljungman P., Davies E.G., Avery R., Tomblyn M., et al. 2013 IDSA clinical practice guideline for vaccination of the immunocompromised host. Clin Infect Dis 2014; 58 (3): 309–18.

74. Hammerquist R.J., Messerschmidt K.A., Pottebaum A.A., Hellwig T.R. Vaccinations in asplenic adults. Am J Health Syst Pharm 2016; 73 (9): e220–8.

75. Sleight B.J., Prasad V.C., DeLaat C., Steele P., Ballard E., Arceci R.J., et al. Correction of autoimmune lymphoproliferative syndrome by bone marrow transplantation. Bone Marrow Transplant 1998; 22 (4): 375–80.

76. Benkerrou M., Le Deist F., de Villartay J.P., Caillat-Zucman S., Rieux-Laucat F., Jabado N., et al. Correction of Fas (CD95) deficiency by haploidentical bone marrow transplantation. Eur J Immunol 1997; 27 (8): 2043–7.


Для цитирования:


Швец О.А., Деордиева Е.А., Курникова М.А., Першин Д.Е., Киева А.М., Пшонкин А.В., Сметанина Н.С., Щербина А.Ю. Редкий ОВИН-подобный фенотип при аутоиммунном лимфопролиферативном синдроме. Вопросы гематологии/онкологии и иммунопатологии в педиатрии. 2021;20(1):170-179. https://doi.org/10.24287/1726-1708-2021-20-1-170-179

For citation:


Shvets O.A., Deordieva E.A., Kurnikova M.A., Pershin D.E., Kieva A.M., Pshonkin A.V., Smetanina N.S., Shcherbina A.Yu. Rare CVID-like phenotype of autoimmune lymphoproliferative syndrome. Pediatric Hematology/Oncology and Immunopathology. 2021;20(1):170-179. (In Russ.) https://doi.org/10.24287/1726-1708-2021-20-1-170-179

Просмотров: 191


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1726-1708 (Print)
ISSN 2414-9314 (Online)