Preview

Вопросы гематологии/онкологии и иммунопатологии в педиатрии

Расширенный поиск

Анализ тромбоцитарной РНК: неинвазивный метод изучения экспрессии опухолевых генов

https://doi.org/10.24287/1726-1708-2021-20-1-207-217

Полный текст:

Аннотация

В настоящее время много внимания уделяется неинвазивным методам диагностики и мониторинга онкологических заболеваний. Одним из перспективных методов является секвенирование РНК тромбоцитов, «обученных» опухолью (tumor-educated platelets), в которых, как было ранее установлено, изменяется мРНК-репертуар при различных онкологических заболеваниях. Таким образом, тромбоциты могут содержать информацию о молекулярно-генетических характеристиках опухоли. В настоящем обзоре собраны современные представления о механизмах взаимодействия между опухолевыми клетками и тромбоцитами, а также рассмотрены возможности применения методов анализа транскриптома тромбоцитов для диагностики и оценки динамики состояния опухоли, в частности ответа на проводимую терапию, а также существующие на сегодняшний день ограничения для широкого внедрения этого метода в клиническую практику. 

Об авторах

И. П. Тесаков
ФГБОУ ВО «Московский государственный университет им. М.В. Ломоносова», Москва
Россия

Москва



А. А. Мартьянов
ФГБУ «Национальный медицинский исследовательский центр детской гематологии, онкологии и иммунологии им. Дмитрия Рогачева» Минздрава России; ФГБУН «Центр теоретических проблем физико-химической фармакологии» РАН
Россия

Москва



А. Е. Друй
ФГБУ «Национальный медицинский исследовательский центр детской гематологии, онкологии и иммунологии им. Дмитрия Рогачева» Минздрава России
Россия

Москва



А. Н. Свешникова
ФГБУ «Национальный медицинский исследовательский центр детской гематологии, онкологии и иммунологии им. Дмитрия Рогачева» Минздрава России; ФГБУН «Центр теоретических проблем физико-химической фармакологии» РАН
Россия

заведующая лабораторией внутриклеточной сигнализации и системной биологии,

109029, Москва, ул. Средняя Калитниковская, 30



Список литературы

1. Best M.G., Wesseling P., Wurdinger T. Tumor-educated platelets as a noninvasive biomarker source for cancer detection and progression monitoring. Cancer Res 2018; 78 (13): 3407–12. 2. Abel E.J., Carrasco A., Culp S.H., Matin S.F., Tamboli P., Tannir N.M., et al. Limitations of preoperative biopsy in patients with metastatic renal cell carcinoma: Comparison to surgical pathology in 405 cases. BJU Int 2012; 110 (11): 1742–6.

2. Dhaun N., Bellamy C.O., Cattran D.C., Kluth D.C. Utility of renal biopsy in the clinical management of renal disease. Kidney Int 2014; 85 (5): 1039–48.

3. Overman M.J., Modak J., Kopetz S., Murthy R., Yao J.C., Hicks M.E., et al. Use of research biopsies in clinical trials: Are risks and benefits adequately discussed? J Clin Oncol 2013; 31 (1): 17–22.

4. Baca S.C., Prandi D., Lawrence M.S., Mosquera J.M., Romanel A., Drier Y., et al. Punctuated evolution of prostate cancer genomes. Cell 2013; 153 (3): 666–77.

5. Yates L.R., Gerstung M., Knappskog S., Desmedt C. Europe PMC Funders Group Subclonal diversification of primary breast cancer revealed by multiregion sequencing. Nat Med 2016; 21 (7): 751–9.

6. Turajlic S., Sottoriva A., Graham T., Swanton C. Resolving genetic heterogeneity in cancer. Nat Rev Genet 2019; 20 (7): 404–16.

7. De Rubis G., Rajeev Krishnan S., Bebawy M. Liquid Biopsies in Cancer Diagnosis, Monitoring, and Prognosis. Trends Pharmacol Sci 2019; 40 (3): 172–86.

8. Kanikarla-Marie P., Lam M., Menter D.G., Kopetz S. Platelets, circulating tumor cells, and the circulome. Cancer Metastasis Rev 2017; 36 (2): 235–48.

9. Best M.G., Vancura A., Wurdinger T. Platelet RNA as a circulating biomarker trove for cancer diagnostics. J Thromb Haemost 2017; 15 (7): 1295–306.

10. Leslie M. Beyond clotting: The powers of platelets. Science 2010; 328 (5978): 562–4.

11. Warshaw A.L., Laster L., Shulman N.R. The stimulation by thrombin of glucose oxidation in human platelets. J Clin Invest 1966; 45 (12): 1923–34.

12. Booyse F.M., Rafelson M.E. Stable messenger RNA in the synthesis of contractile protein in human platelets. Biochim Biophys Acta 1967; 145 (1): 188–90.

13. Booyse F.M., Rafelson M.E. Studies on human platelets. I. Synthesis of platelet protein in a cell-free system. Biochim Biophys Acta 1968; 166 (3): 689–97.

14. Newman P.J., Gorski J., White G.C., Gidwitz S., Cretney C.J., Aster R.H. Enzymatic amplification of platelet-specifi c messenger RNA using the polymerase chain reaction. J Clin Invest 1988; 82 (2): 739–43.

15. Denis M.M., Tolley N.D., Bunting M., Schwertz H., Lindemann S., Yost C.C., et al. Signal-Dependent Pre-mRNA Splicing in Anucleate Platelets Melvin. Cell 2005; 122 (3): 379–91.

16. Nassa G., Giurato G., Cimmino G., Rizzo F., Ravo M., Salvati A., et al. Splicing of platelet resident pre-mRNAs upon activation by physiological stimuli results in functionally relevant proteome modifications. Sci Rep 2018; 8 (1): 1–12.

17. Bahou W.F., Gnatenko D.V. Platelet transcriptome: The application of microarray analysis to platelets. Semin Thromb Hemost 2004; 30 (4): 473–84.

18. In ’T Veld S.G.J.G., Wurdinger T. Tumor-educated platelets. Blood 2019; 133 (22): 2359–64.

19. Best M.G., Sol N., Kooi I., Tannous J., Westerman B.A., Rustenburg F., et al. RNA-Seq of Tumor-Educated Platelets Enables Blood-Based Pan-Cancer, Multiclass, and Molecular Pathway Cancer Diagnostics. Cancer Cell 2015; 28 (5): 666–76.

20. Nilsson R.J.A., Balaj L., Hulleman E., Van Rijn S., Pegtel D.M., Walraven M., et al. Blood platelets contain tumor-derived RNA biomarkers. Blood 2011; 118 (13): 3680–3.

21. Kuznetsov H.S., Marsh T., Markens B.A., Castaño Z., Greene-Colozzi A., Hay S.A., et al. Identification of luminal breast cancers that establish a tumor-supportive macroenvironment defined by proangiogenic platelets and bone marrow-derived cells. Cancer Discov 2012; 2 (12): 1150–65.

22. Tjon-Kon-Fat L.A., Lundholm M., Schröder M., Wurdinger T., Thellenberg-Karlsson C., Widmark A., et al. Platelets harbor prostate cancer biomarkers and the ability to predict therapeutic response to abiraterone in castration resistant patients. Prostate 2017; 78 (1): 48–53.

23. Wang S., Li Z., Xu R. Human cancer and platelet interaction, a potential therapeutic target. Int J Mol Sci 2018; 19 (4): 1–15.

24. Tjon-Kon-Fat L.A., Sol N., Wurdinger T., Nilsson R.J.A. Platelet RNA in Cancer Diagnostics. Semin Thromb Hemost 2018; 44 (2): 135–41.

25. McAllister S.S., Weinberg R.A. The tumour-induced systemic environment as a critical regulator of cancer progression and metastasis. Nat Cell Biol 2014; 16 (8): 717–27.

26. Lood C., Amisten S., Gullstrand B., Jönsen A., Allhorn M., Truedsson L., et al. Platelet transcriptional profile and protein expression in patients with systemic lupus erythematosus: Up-regulation of the type I interferon system is strongly associated with vascular disease. Blood 2010; 116 (11): 1951–7.

27. Boilard E., Nigrovic P.A., Larabee K., Watts G.F.M., Coblyn J.S., Weinblatt M.E., et al. Platelets amplify inflammation in arthritis via collagen-dependent microparticle production. Science 2010; 327 (5965): 580–3.

28. Menter D.G., Hatfield J.S., Harkins C., Sloane B.F., Taylor J.D., Crissman J.C., et al. Tumor cell-platelet interactions in vitro and their relationship to in vivo arrest of hematogenously circulating tumor cells. Clin Exp Metastasis 1987; 5 (1): 65–78.

29. Egan K., Crowley D., Smyth P., O’Toole S., Spillane C., Martin C., et al. Platelet adhesion and degranulation induce pro-survival and pro-angiogenic signalling in ovarian cancer cells. PLoS ONE 2011; 6 (10).

30. Labelle M., Begum S., Hynes R.O. Direct Signaling between Platelets and Cancer Cells Induces an Epithelial-Mesenchymal-Like Transition and Promotes Metastasis. Cancer Cell 2011; 20 (5): 576–90.

31. Labelle M., Hynes R.O. The initial hours of metastasis: The importance of cooperative host-tumor cell interactions during hematogenous dissemination. Cancer Discov 2012; 2 (12): 1091–9.

32. Kuznetsov H.S., Marsh T., Markens B.A., Castaño Z., Greene-Colozzi А., Hay S.A., et al. Identification of Luminal Breast Cancers That Establish a Tumor-Supportive Macroenvironment Defined by Proangiogenic Platelets and Bone Marrow-Derived Cells. Cancer Discov 2012; 2 (12): 1150–65.

33. Placke T., Örgel M., Schaller M., Jung G., Rammensee H.G., Kopp H.G., et al. Platelet-derived MHC class I confers a pseudonormal phenotype to cancer cells that subverts the antitumor reactivity of natural killer immune cells. Cancer Res 2012; 72 (2): 440–8.

34. Joyce J.A., Pollard J.W. Microenvironmental regulation of metastasis. Nat Rev Cancer 2009; 9 (4): 239–52.

35. Franco A.T., Corken A., Ware J. Review Article Platelets at the interface of thrombosis, in flammation, and cancer. Blood 2016; 126 (5): 582–9.

36. Plantureux L., Mège D., Crescence L., Dignat-George F., Dubois C., Panicot-Dubois L. Impacts of cancer on platelet production, activation and education and mechanisms of cancer-associated thrombosis. Cancers (Basel) 2018; 10 (11): 1–23.

37. Boukerche H., Berthier-Vergnes O., Penin F., Tabone E., Lizard G., Bailly M., et al. Human melanoma cell lines differ in their capacity to release ADP and aggregate platelets. Br J Haematol 1994; 87 (4): 763–72.

38. Heinmöller E., Weinel R.J., Heidtmann H.H., Salge U., Seitz R., Schmitz I., et al. Studies on tumor-cell-induced platelet aggregation in human lung cancer lines. J Cancer Res Clin Oncol 1996; 122 (12): 735–44.

39. Sakai H., Suzuki T., Takahashi Y., Ukai M., Tauchi K., Fujii T., et al. Upregulation of thromboxane synthase in human colorectal carcinoma and the cancer cell proliferation by thromboxane A2. FEBS Lett 2006; 580 (14): 3368–74.

40. Cathcart M.C., Gately K., Cummins R., Kay E., O’Byrne K.J., Pidgeon G.P. Examination of thromboxane synthase as a prognostic factor and therapeutic target in non-small cell lung cancer. Mol Cancer 2011; 10: 1–14.

41. Kajita S., Ruebel K.H., Casey M.B., Nakamura N., Lloyd R.V. Role of COX-2, thromboxane A2 synthase, and prostaglandin I 2 synthase in papillary thyroid carcinoma growth. Mod Pathol 2005; 18 (2): 221–7.

42. De Leval X., Benoit V., Delarge J., Julémont F., Masereel B., Pirotte B., et al. Pharmacological evaluation of the novel thromboxane modulator BM-567 (II/II). Effects of BM-567 on osteogenic sarcoma-cell-induced platelet aggregation. Prostaglandins Leukot Essent Fatty Acids 2003; 68 (1): 55–9.

43. Ito Y., Katagiri H., Ishii K., Kakita A., Hayashi I., Majima M. Effects of selective cyclooxygenase inhibitors on ischemia/ reperfusion-induced hepatic microcirculatory dysfunction in mice. Eur Surg Res 2003; 35 (5): 408–16.

44. Nie D., Lamberti M., Zacharek A., Li L., Szekeres K., Tang K., et al. Thromboxane A2 regulation of endothelial cell migration, angiogenesis, and tumor metastasis. Biochem Biophys Res Commun 2000; 267 (1): 245–51.

45. Carlsson K., Freskgård P.O., Persson E., Carlsson U., Svensson M. Probing the interface between factor Xa and tissue factor in the quaternary complex tissue factor-factor VIIa-factor Xa-tissue factor pathway inhibitor. European J Biochem 2003; 270 (12): 2576–82.

46. Коваленко Т.А., Пантелеев М.А., Свешникова А.Н. Роль тканевого фактора в метастазировании, неоангиогенезе и гемостазе при онкологических заболеваниях. Онкогематология 2019; 14 (2).

47. MacKman N., Taubman M. Tissue factor: Past, present, and future. Arterioscler Thromb Vasc Biol 2009; 29 (12): 1986–8.

48. Ruf W., Yokota N., Schaffner F. Tissue factor in cancer progression and angiogenesis. Thromb Res 2010; 125 Suppl: S36–8.

49. Liu Y., Jiang P., Capkova K., Xue D., Ye L., Sinha S.C., et al. Tissue factor-activated coagulation cascade in the tumor microenvironment is critical for tumor progression and an effective target for therapy. Cancer Res 2011; 71 (20): 6492–502.

50. Calvete J.J. On the Structure and Function of Platelet Integrin aIIbb3, the Fibrinogen Receptor. Proc Soc Exp Biol Med 1995; 208 (4): 346–60.

51. Karpatkin S., Pearlstein E., Ambrogio C., Coller B.S. Role of adhesive proteins in platelet tumor interaction in vitro and metastasis formation in vivo. J Clin Invest 1988; 81 (4): 1012–9.

52. Zimmer G., Oeff ner F., Von Messling V., Tschernig T., Gröne H.J., Klenk H.D., et al. Cloning and characterization of gp36, a human mucin-type glycoprotein preferentially expressed in vascular endothelium. Biochem J 1999; 341 (2): 277–84.

53. Astarita J.L., Acton S.E., Turley S.J. Podoplanin: Emerging functions in development, the immune system, and cancer. Front Immunol 2012; 3(SEP): 1–12.

54. Schacht V., Dadras S.S., Johnson L.A., Jackson D.G., Hong Y.K., Detmar M. Up-regulation of the lymphatic marker podoplanin, a mucin-type transmembrane glycoprotein, in human squamous cell carcinomas and germ cell tumors. Am J Pathol 2005; 166 (3): 913–21.

55. Kato Y., Sasagawa I., Kaneko M., Osawa M., Fujita N., Tsuruo T. Aggrus: A diagnostic marker that distinguishes seminoma from embryonal carcinoma in testicular germ cell tumors. Oncogene 2004; 23 (52): 8552–6.

56. Mishima K., Kato Y., Kaneko M.K., Nakazawa Y., Kunita A., Fujita N., et al. Podoplanin expression in primary central nervous system germ cell tumors: A useful histological marker for the diagnosis of germinoma. Acta Neuropathol 2006; 111 (6): 563–8.

57. Suzuki-Inoue K., Inoue O., Ozaki Y. Novel platelet activation receptor CLEC-2: From discovery to prospects. J Thromb Haemost 2011; 9 (1 S): 44–55.

58. Badolia R., Inamdar V., Manne B.K., Dangelmaier C., Eble J.A., Kunapuli S.P. Gq pathway regulates proximal C-type lectin-like receptor-2 (CLEC-2) signaling in platelets. J Biol Chem 2017; 292 (35): 14516–31.

59. Martyanov A.A., Kaneva V.N., Panteleev M.A., Sveshnikova A.N. Physiological and pathophysiological aspects of blood platelet activation through CLEC-2 receptor. Oncohematology 2018; 13 (3): 83–90.

60. Takagi S., Sato S., Oh-hara T., Takami M., Koike S., Mishima Y., et al. Platelets Promote Tumor Growth and Metastasis via Direct Interaction between Aggrus/ Podoplanin and CLEC-2. PLoS ONE 2013; 8 (8): 1–11.

61. Bellingham S.A., Guo B.B., Coleman B.M., Hill A.F. Exosomes: Vehicles for the transfer of toxic proteins associated with neurodegenerative diseases? Front Physiol 2012; 3: 124.

62. Skog J., Wurdinger T., van Rijn S., Meijer D.H., Gainche L., Sena-Esteves M., et al. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 2008; 10 (12): 1470–6.

63. Rutkowska A., Stoczyńska-Fidelus E., Janik K., Włodarczyk A., Rieske P. EGFRvIII: An Oncogene with Ambiguous Role. J Oncol 2019; 2019: 1092587. 65. Guarino M. Epithelial-mesenchymal transition and tumour invasion. Int J Biochem Cell Biol 2007; 39 (12): 2153–60.

64. Guillem-Llobat P., Dovizio M., Bruno A., Ricciotti E., Cufino V., Sacco A., et al. Aspirin prevents colorectal cancer metastasis in mice by splitting the crosstalk between platelets and tumor cells. Oncotarget 2016; 7 (22): 32462– 77.

65. Dovizio M., Maier T.J., Alberti S., Di Francesco L., Marcantoni E., Munch G., et al. Pharmacological inhibition of platelet-tumor cell cross-talk prevents platelet-induced overexpression of cyclooxygenase-2 in HT29 human colon carcinoma cellss. Mol Pharmacol 2013; 84 (1): 25–40.

66. Assoian R.K., Sporn M.B. Type B Transforming Growth Factor in Human Platelets. J Cell Biol 1986; 102: 1217–23.

67. Cho M.S., Bottsford-Miller J., Vasquez H.G., Stone R., Zand B., Kroll M.H., et al. Platelets increase the proliferation of ovarian cancer cells. Blood 2012; 120 (24): 4869–72.

68. Zhang Y., Unnithan R.V.M, Hamidi A., Caja L., Saupe F., Moustakas A., et al. TANK-binding kinase 1 is a mediator of platelet-induced EMT in mammary carcinoma cells. FASEB J 2019; 33 (7): 7822–32.

69. Helgason E., Phung Q.T., Dueber E.C. Recent insights into the complexity of Tank-binding kinase 1 signaling networks: The emerging role of cellular localization in the activation and substrate specificity of TBK1. FEBS Lett 2013; 587 (8): 1230–7.

70. Ou Y.H., Torres M., Ram R., Formstecher E., Roland C., Cheng T., et al. TBK1 Directly Engages Akt/PKB Survival Signaling to Support Oncogenic Transformation. Mol Cell 2011; 41 (4): 458–70.

71. Barbie D.A., Tamayo P., Boehm J.S., Kim S.Y., Moody S.E., Dunn I.F., et al. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature 2009; 462 (7269): 108–12.

72. Radziwon-Balicka A., Santos-Martinez M.J., Corbalan J.J., O’Sullivan S., Treumann A., Gilmer J.F., et al. Mechanisms of platelet-stimulated colon cancer invasion: Role of clusterin and thrombospondin 1 in regulation of the P38MAPK-MMP-9 pathway. Carcinogenesis 2014; 35 (2): 324–32.

73. Kitamura T., Qian B.Z., Pollard J.W. Immune cell promotion of metastasis. Nat Rev Immunol 2015; 15 (2): 73–86.

74. Gay L.J., Felding-Habermann B. Contribution of platelets to tumour metastasis. Nat Rev Cancer 2011; 11 (2): 123– 34.

75. Gruber I.V., Landenberger N., Staebler A., Hahn M., Wallwiener D., Fehm T. Relationship between circulating tumor cells and peripheral T-cells in patients with primary breast cancer. Anticancer Res 2013; 33 (5): 2233–8.

76. Caligiuri M.A. Human natural killer cells. Blood 2008; 112 (3): 461–9.

77. Zitvogel L., Tesniere A., Kroemer G. Cancer despite immunosurveillance: Immunoselection and immunosubversion. Nat Rev Immunol 2006; 6 (10): 715–27.

78. Kopp H.G., Placke T., Salih H.R. Platelet-derived transforming growth factor-b down-regulates NKG2D thereby inhibiting natural killer cell antitumor reactivity. Cancer Res 2009; 69 (19): 7775–83.

79. Calverley D.C., Phang T.L., Choudhury Q.G., Gao B., Oton A.B., Weyant M.J., et al. Significant downregulation of platelet gene expression in metastatic lung cancer. Clin Transl Sci 2010; 3 (5): 227–32.

80. Nilsson R.J.A., Karachaliou N., Berenguer J., Gimenez-Capitan A., Schellen P., Teixido C., et al. Rearranged EML4-ALK fusion transcripts sequester in circulating blood platelets and enable bloodbased crizotinib response monitoring in non-small-cell lung cancer. Oncotarget 2016; 7 (1): 1066–75.

81. Best M.G., Sol N., In ‘t Veld S.G.J.G., Vancura A., Muller M., Niemeijer A.L.N., et al. Swarm Intelligence-Enhanced Detection of Non-Small-Cell Lung Cancer Using Tumor-Educated Platelets. Cancer Cell 2017; 32 (2): 238–252.e9.

82. Jahr S., Hentze H., Englisch S., Hardt D., Fackelmayer F.O., Hesch R.D., et al. DNA fragments in the blood plasma of cancer patients: Quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer Res 2001; 61 (4): 1659–65.

83. Stroun M., Anker P., Belianski M., Henri J., Lederrey C., Ojha M., et al. Presence of RNA in the Nucleoprotein Complex Spontaneously Released by Human Lymphocytes and Frog Auricles in Culture. Cancer Res 1978; 38 (10): 3546–54.

84. Wieczorek A.J., Sitaramam V., Machleidt W., Rhyner K., Perruchoud A.P., Block L.H. Diagnostic and Prognostic Value of RNA-Proteolipid in Sera of Patients with Malignant Disorders following Therapy: First Clinical Evaluation of a Novel Tumor Marker. Cancer Res 1987; 47 (23): 6407–12.

85. Zaporozhchenko I.A., Ponomaryova A.A., Rykova E.Y., Laktionov P.P. The potential of circulating cell-free RNA as a cancer biomarker: challenges and opportunities. Exp Rev Mol Diagnost 2018; 18 (2): 133–45.

86. Tsui N.B.Y., Ng E.K.O., Lo Y.M.D. Stability of endogenous and added RNA in blood specimens, serum, and plasma. Clin Chem 2002; 48 (10): 1647–53.

87. Arroyo J.D., Chevillet J.R., Kroh E.M., Ruf I.K., Pritchard C.C., Gibson D.F., et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Scie U S A 2011; 108 (12): 5003–8.

88. Fleischhacker M., Schmidt B. Circulating nucleic acids (CNAs) and cancer-A survey. Biochim Biophys Acta 2007; 1775 (1): 181–232.

89. Hao Y.X., Li Y.M., Ye M., Guo Y.Y., Li Q.W., Peng X.M., et al. KRAS and BRAF mutations in serum exosomes from patients with colorectal cancer in a Chinese population. Oncol Lett 2017; 13 (5): 3608– 16.

90. Manda S.V., Kataria Y., Tatireddy B.R., Ramakrishnan B., Ratnam B.G., Lath R., et al. Exosomes as a biomarker platform for detecting epidermal growth factor receptor-positive high-grade gliomas. J Neurosurg 2018; 128 (4): 1091–101.

91. Del Re M., Biasco E., Crucitta S., Derosa L., Rofi E., Orlandini C., et al. The Detection of Androgen Receptor Splice Variant 7 in Plasma-derived Exosomal RNA Strongly Predicts Resistance to Hormonal Therapy in Metastatic Prostate Cancer Patients. Eur Urol 2017; 71 (4): 680–7.

92. Xu Y.F., Hannafon B.N., Zhao Y.D., Postier R.G., Ding W.Q. Plasma exosome miR-196a and miR-1246 are potential indicators of localized pancreatic cancer. Oncotarget 2017; 8 (44): 77028–40.

93. Jin X., Chen Y., Chen H., Fei S., Chen D., Cai X., et al. Evaluation of tumor-derived exosomal miRNA as potential diagnostic biomarkers for early-stage non-small cell lung cancer using next-generation sequencing. Clin Cancer Res 2017; 23 (17): 5311–9.

94. Liu Q., Yu Z., Yuan S., Xie W., Li C., Hu Z., et al. Circulating exosomal microRNAs as prognostic biomarkers for non-smallcell lung cancer. Oncotarget 2017; 8 (8): 13048–58.

95. Li Q., Shao Y., Zhang X., Zheng T., Miao M., Qin L., et al. Plasma long noncoding RNA protected by exosomes as a potential stable biomarker for gastric cancer. Tumor Biol 2015; 36 (3): 2007–12.

96. Sourvinou I.S., Markou A., Lianidou E.S. Quantification of circulating miRNAs in plasma: Effect of preanalytical and analytical parameters on their isolation and stability. J Mol Diagnost 2013; 15 (6): 827–34.

97. Sabir S.R., Yeoh S., Jackson G., Bayliss R. EML4-ALK variants: Biological and molecular properties, and the implications for patients. Cancers 2017; 9 (9).

98. Christopoulos P., Kirchner M., Endris V., Stenzinger A., Thomas M. EML4-ALK V3, treatment resistance, and survival: Refining the diagnosis of ALK+ NSCLC. J Thorac Dis 2018; 10 (9): S1989–91.

99. Dovizio M., Bruno A., Contursi A., Grande R., Patrignani P. Platelets and extracellular vesicles in cancer: diagnostic and therapeutic implications. Cancer Metastasis Rev 2018; 37 (2–3): 455–67.

100. Liu L., Lin F., Ma X., Chen Z., Yu J. Tumor-educated platelet as liquid biopsy in lung cancer patients. Crit Rev Oncol Hematol 2020; 146: 102863. 103. Sol N., Wurdinger T. Platelet RNA signatures for the detection of cancer. Cancer Metastasis Rev 2017; 36 (2): 263–72.


Для цитирования:


Тесаков И.П., Мартьянов А.А., Друй А.Е., Свешникова А.Н. Анализ тромбоцитарной РНК: неинвазивный метод изучения экспрессии опухолевых генов. Вопросы гематологии/онкологии и иммунопатологии в педиатрии. 2021;20(1):207-217. https://doi.org/10.24287/1726-1708-2021-20-1-207-217

For citation:


Tesakov I.P., Martyanov A.A., Drui A.E., Sveshnikova A.N. Analysis of platelet RNA: a non-invasive method for studying the expression of tumor genes. Pediatric Hematology/Oncology and Immunopathology. 2021;20(1):207-217. (In Russ.) https://doi.org/10.24287/1726-1708-2021-20-1-207-217

Просмотров: 391


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1726-1708 (Print)
ISSN 2414-9314 (Online)