Preview

Вопросы гематологии/онкологии и иммунопатологии в педиатрии

Расширенный поиск

Роль тромбоцитов в распространении опухолевых метастазов

https://doi.org/10.24287/1726-1708-2021-20-4-185-190

Полный текст:

Аннотация

Тромбоциты – это небольшие безъядерные клетки, основная функция которых – обеспечивать остановку кровотечений. Помимо выполнения гемостатической функции тромбоциты также задействованы в иммунных и воспалительных процессах. Обширные экспериментальные данные показывают, что тромбоциты поддерживают метастазирование опухолей и их активация играет решающую роль в прогрессировании рака. В системе кровообращения тромбоциты защищают опухолевые клетки от иммунной элиминации и способствуют их задержке в эндотелии, поддерживая образование вторичных поражений. За счет серьезного вклада тромбоцитов в выживаемость и распространение опухолевых клеток антитромботические препараты рассматриваются как новый метод борьбы с метастазированием опухолей. В этой статье авторы поставили перед собой цель обобщить и актуализировать существующие на данный момент знания о молекулярных механизмах взаимодействия тромбоцитов с опухолевыми клетками и роли данного процесса, а также обсудить возможность лечения онкологических заболеваний на основе антитромботической терапии. 

Об авторах

А. А. Якушева
ФГБУ «Национальный медицинский исследовательский центр детской гематологии, онкологии и иммунологии им. Дмитрия Рогачева» Минздрава России; ФГБУН Центр теоретических проблем физико-химической фармакологии РАН
Россия

младший научный сотрудник лаборатории клеточного гемостаза и тромбоза,

117997, Москва, ул. Саморы Машела, 1



А. А. Филькова
ФГБУ «Национальный медицинский исследовательский центр детской гематологии, онкологии и иммунологии им. Дмитрия Рогачева» Минздрава России; ФГБУН Центр теоретических проблем физико-химической фармакологии РАН
Россия

117997, Москва, ул. Саморы Машела, 1



Список литературы

1. Versteeg H.H., Heemskerk J.W., Levi M., Reitsma P.H. New fundamentals in hemostasis. Physiol Rev 2013; 93 (1): 327–58.

2. Savage B., Saldivar E., Ruggeri Z.M. Initiation of platelet adhesion by arrest onto fibrinogen or translocation on von Willebrand factor. Cell 1996; 84 (2): 289–97.

3. Bergmeier W., Hynes R.O. Extracellular matrix proteins in hemostasis and thrombosis. Cold Spring Harb Perspect Biol 2012; 4 (2): a005132.

4. Reininger A.J. Platelet function under high shear conditions. Hamostaseologie 2009; 29 (1): 21–2, 24.

5. Nieswandt B., Watson S.P. Platelet-collagen interaction: is GPVI the central receptor? Blood 2003; 102 (2): 449–61.

6. Hechler B., Gachet C. Purinergic Receptors in Thrombosis and Inflammation. Arterioscler Thromb Vasc Biol 2015; 35 (11): 2307–15.

7. Shattil S.J., Newman P.J. Integrins: dynamic scaffolds for adhesion and signaling in platelets. Blood 2004; 104 (6): 1606–15.

8. Jackson S.P., Nesbitt W.S., Kulkarni S. Signaling events underlying thrombus formation. J Thromb Haemost 2003; 1 (7): 1602–12.

9. Nurden A.T. Platelets, inflammation and tissue regeneration. Thromb Haemost 2011; 105 Suppl 1: S13–33.

10. Leblanc R., Peyruchaud O. Metastasis: new functional implications of platelets and megakaryocytes. Blood 2016; 128 (1): 24–31.

11. Varki A. Trousseau’s syndrome: multiple definitions and multiple mechanisms. Blood 2007; 110 (6): 1723–9.

12. Gasic G.J., Gasic T.B., Stewart C.C. Antimetastatic effects associated with platelet reduction. Proc Natl Acad Sci U S A 1968; 61 (1): 46–52.

13. Rothwell P.M., Wilson M., Price J.F., Belch J.F., Meade T.W., Mehta Z. Effect of daily aspirin on risk of cancer metastasis: a study of incident cancers during randomised controlled trials. Lancet 2012; 379 (9826): 1591–601.

14. Shiao J., Thomas K.M., Rahimi A.S., Rao R., Yan J., Xie X.J., et al. Aspirin/ antiplatelet agent use improves disease-free survival and reduces the risk of distant metastases in Stage II and III triple-negative breast cancer patients. Breast Cancer Res Treat 2017; 161 (3): 463–71.

15. Rothwell P.M., Fowkes F.G., Belch J.F., Ogawa H., Warlow C.P., Meade T.W. Effect of daily aspirin on long-term risk of death due to cancer: analysis of individual patient data from randomised trials. Lancet 2011; 377 (9759): 31–41.

16. Suzuki-Inoue K., Kato Y., Inoue O., Kaneko M.K., Mishima K., Yatomi Y., et al. Involvement of the snake toxin receptor CLEC-2, in podoplanin-mediated platelet activation, by cancer cells. J Biol Chem 2007; 282 (36): 25993–6001.

17. Gong L., Cai Y., Zhou X., Yang H. Activated platelets interact with lung cancer cells through P-selectin glycoprotein ligand-1. Pathol Oncol Res 2012; 18 (4): 989–96.

18. Mammadova-Bach E., Gil-Pulido J., Sarukhanyan E., Burkard P., Shityakov S., Schonhart C., et al. Platelet glycoprotein VI promotes metastasis through interaction with cancer cell-derived galectin-3. Blood 2020; 135 (14): 1146–60.

19. Lavergne M., Janus-Bell E., Schaff M., Gachet C., Mangin P.H. Platelet Integrins in Tumor Metastasis: Do They Represent a Therapeutic Target? Cancers (Basel) 2017; 9 (10): 133.

20. Colonna M., Samaridis J., Angman L. Molecular characterization of two novel C-type lectin-like receptors, one of which is selectively expressed in human dendritic cells. Eur J Immunol 2000; 30 (2): 697–704.

21. May F., Hagedorn I., Pleines I., Bender M., Vogtle T., Eble J., et al. CLEC-2 is an essential platelet-activating receptor in hemostasis and thrombosis. Blood 2009; 114 (16): 3464–72.

22. Christou C.M., Pearce A.C., Watson A.A., Mistry A.R., Pollitt A.Y., Fenton-May A.E., et al. Renal cells activate the platelet receptor CLEC-2 through podoplanin. Biochem J 2008; 411 (1): 133–40.

23. Tomooka M., Kaji C., Kojima H., Sawa Y. Distribution of podoplanin-expressing cells in the mouse nervous systems. Acta Histochem Cytochem 2013; 46 (6): 171–7.

24. Wicki A., Christofori G. The potential role of podoplanin in tumour invasion. Br J Cancer 2007; 96 (1): 1–5.

25. Gavert N., Conacci-Sorrell M., Gast D., Schneider A., Altevogt P., Brabletz T., et al. L1, a novel target of beta-catenin signaling, transforms cells and is expressed at the invasive front of colon cancers. J Cell Biol 2005; 168 (4): 633–42.

26. Bertozzi C.C., Schmaier A.A., Mericko P., Hess P.R., Zou Z., Chen M., et al. Platelets regulate lymphatic vascular development through CLEC-2-SLP-76 signaling. Blood 2010; 116 (4): 661–70.

27. Christofori G. Cancer: division of labour. Nature 2007; 446 (7137): 735–6.

28. Sugimoto Y., Watanabe M., Oh-hara T., Sato S., Isoe T., Tsuruo T. Suppression of experimental lung colonization of a metastatic variant of murine colon adenocarcinoma 26 by a monoclonal antibody 8F11 inhibiting tumor cell-induced platelet aggregation. Cancer Res 1991; 51 (3): 921–5.

29. Ebrahi M., Jamasbi J., Adler K., Megens R.T.A., M’Bengue Y., Blanchet X., et al. Dimeric Glycoprotein VI Binds to Collagen but Not to Fibrin. Thromb Haemost 2018; 118 (2): 351–61.

30. Bultmann A., Li Z., Wagner S., Peluso M., Schonberger T., Weis C., et al. Impact of glycoprotein VI and platelet adhesion on atherosclerosis – a possible role of fibronectin. J Mol Cell Cardiol 2010; 49 (3): 532–42.

31. Hechler B., Gachet C. Comparison of two murine models of thrombosis induced by atherosclerotic plaque injury. Thromb Haemost 2011; 105 Suppl 1: S3–12.

32. Jain S., Russell S., Ware J. Platelet glycoprotein VI facilitates experimental lung metastasis in syngenic mouse models. J Thromb Haemost 2009; 7 (10): 1713–7.

33. Dovizio M., Maier T.J., Alberti S., Di Francesco L., Marcantoni E., Munch G., et al. Pharmacological inhibition of platelet-tumor cell crosstalk prevents platelet-induced overexpression of cyclooxygenase-2 in HT29 human colon carcinoma cells. Mol Pharmacol 2013; 84 (1): 25–40.

34. Schattner M. Platelets and galectins. Ann Transl Med 2014; 2 (9): 85.

35. Thijssen V.L., Heusschen R., Caers J., Griffioen A.W. Galectin expression in cancer diagnosis and prognosis: A systematic review. Biochim Biophys Acta 2015; 1855 (2): 235–47.

36. Schumacher D., Strilic B., Sivaraj K.K., Wettschureck N., Offermanns S. Platelet-derived nucleotides promote tumorcell transendothelial migration and metastasis via P2Y2 receptor. Cancer Cell 2013; 24 (1): 130–7.

37. Zhang H., Luo M., Liang X., Wang D., Gu X., Duan C., et al. Galectin-3 as a marker and potential therapeutic target in breast cancer. PLoS One 2014; 9 (9): e103482.

38. Mammadova-Bach E., Zigrino P., Brucker C., Bourdon C., Freund M., De Arcangelis A., et al. Platelet integrin alpha6beta1 controls lung metastasis through direct binding to cancer cell-derived ADAM9. JCI Insight 2016; 1 (14): e88245.

39. Mahimkar R.M., Visaya O., Pollock A.S., Lovett D.H. The disintegrin domain of ADAM9: a ligand for multiple beta1 renal integrins. Biochem J 2005; 385 (Pt 2): 461–8.

40. Xu Q., Liu X., Cai Y., Yu Y., Chen W. RNAi-mediated ADAM9 gene silencing inhibits metastasis of adenoid cystic carcinoma cells. Tumour Biol 2010; 31 (3): 217–24.

41. Lin C.Y., Chen H.J., Huang C.C., Lai L.C., Lu T.P., Tseng G.C., et al. ADAM9 promotes lung cancer metastases to brain by a plasminogen activator-based pathway. Cancer Res 2014; 74 (18): 5229– 43.

42. Fritzsche F.R., Wassermann K., Jung M., Tolle A., Kristiansen I., Lein M., et al. ADAM9 is highly expressed in renal cell cancer and is associated with tumour progression. BMC Cancer 2008; 8: 179.

43. Grutzmann R., Luttges J., Sipos B., Ammerpohl O., Dobrowolski F., Alldinger I., et al. ADAM9 expression in pancreatic cancer is associated with tumour type and is a prognostic factor in ductal adenocarcinoma. Br J Cancer 2004; 90 (5): 1053–8.

44. Boukerche H., Berthier-Vergnes O., Tabone E., Dore J.F., Leung L.L., McGregor J.L. Platelet-melanoma cell interaction is mediated by the glycoprotein IIb– IIIa complex. Blood 1989; 74 (2): 658–63.

45. Dardik R., Kaufmann Y., Savion N., Rosenberg N., Shenkman B., Varon D. Platelets mediate tumor cell adhesion to the subendothelium under flow conditions: involvement of platelet GPIIb-IIIa and tumor cell alpha(v) integrins. Int J Cancer 1997; 70 (2): 201–7.

46. Jurasz P., Alonso-Escolano D., Radomski M.W. Platelet – cancer interactions: mechanisms and pharmacology of tumour cell-induced platelet aggregation. Br J Pharmacol 2004; 143 (7): 819– 26.

47. Weiss L. Deformation-driven, lethal damage to cancer cells. Its contribution to metastatic inefficiency. Cell Biophys 1991; 18 (2): 73–9.

48. Gay L.J., Felding-Habermann B. Contribution of platelets to tumour metastasis. Nat Rev Cancer 2011; 11 (2): 123– 34.

49. Tesfamariam B. Involvement of platelets in tumor cell metastasis. Pharmacol Ther 2016; 157: 112–9.

50. Krog B.L., Henry M.D. Biomechanics of the Circulating Tumor Cell Microenvironment. Adv Exp Med Biol 2018; 1092: 209–33.

51. Liotta L.A. Cancer cell invasion and metastasis. Sci Am 1992; 266 (2): 54–9, 62–3.

52. Talmadge J.E., Meyers K.M., Prieur D.J., Starkey J.R. Role of NK cells in tumour growth and metastasis in beige mice. Nature 1980; 284 (5757): 622–4.

53. Wiltrout R.H., Herberman R.B., Zhang S.R., Chirigos M.A., Ortaldo J.R., Green K.M. Jr, et al. Role of organ-associated NK cells in decreased formation of experimental metastases in lung and liver. J Immunol 1985; 134 (6): 4267–75.

54. Storkus W.J., Dawson J.R. Target structures involved in natural killing (NK): characteristics, distribution, and candidate molecules. Crit Rev Immunol 1991; 10 (5): 393–416.

55. Placke T., Kopp H.G., Salih H.R. The wolf in sheep’s clothing: Platelet-derived “pseudo self” impairs cancer cell “missing self” recognition by NK cells. Oncoimmunology 2012; 1 (4): 557–9.

56. Nieswandt B., Hafner M., Echtenacher B., Mannel D.N. Lysis of tumor cells by natural killer cells in mice is impeded by platelets. Cancer Res 1999; 59 (6): 1295–300.

57. Kopp H.G., Placke T., Salih H.R. Platelet-derived transforming growth factor-beta down-regulates NKG2D thereby inhibiting natural killer cell antitumor reactivity. Cancer Res 2009; 69 (19): 7775–83.

58. Labelle M., Begum S., Hynes R.O. Direct signaling between platelets and cancer cells induces an epithelial-mesenchymal-like transition and promotes metastasis. Cancer Cell 2011; 20 (5): 576–90.

59. Sawicki G., Sanders E.J., Salas E., Wozniak M., Rodrigo J., Radomski M.W. Localization and translocation of MMP-2 during aggregation of human platelets. Thromb Haemost 1998; 80 (5): 836–9.

60. Choi J.H., Kim H., Kim H.S., Um S.H., Choi J.W., Oh B.K. MMP-2 detective silicon nanowire biosensor using enzymatic cleavage reaction. J Biomed Nanotechnol 2013; 9 (4): 732–5.


Рецензия

Для цитирования:


Якушева А.А., Филькова А.А. Роль тромбоцитов в распространении опухолевых метастазов. Вопросы гематологии/онкологии и иммунопатологии в педиатрии. 2021;20(4):185-190. https://doi.org/10.24287/1726-1708-2021-20-4-185-190

For citation:


Yakusheva A.A., Filkova A.A. The role of platelets in tumor cell metastasis. Pediatric Hematology/Oncology and Immunopathology. 2021;20(4):185-190. (In Russ.) https://doi.org/10.24287/1726-1708-2021-20-4-185-190

Просмотров: 64


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1726-1708 (Print)
ISSN 2414-9314 (Online)