Preview

Вопросы гематологии/онкологии и иммунопатологии в педиатрии

Расширенный поиск

Молекулярные механизмы нарушения гемостаза в онкологии

https://doi.org/10.24287/1726-1708-2021-20-4-191-198

Полный текст:

Аннотация

Злокачественные новообразования характеризуются наличием патологии системы гемостаза, предрасполагающей онкологических больных к тромбогеморрагическим осложнениям. Патогенез коагулопатии, связанной с раком, сложен и включает различные механизмы. Опухолевые клетки обладают способностью активировать систему гемостаза хозяина, и этот феномен управляется теми же онкогенами, которые ответственны за неопластическую трансформацию. Кроме предрасполагающих факторов к нарушению гемостаза со стороны заболевания сами противоопухолевые препараты несут риски развития нарушений коагуляции. Патофизиологические основы такого рода нарушений, вызванных химиопрепаратами, связаны с повреждением эндотелия, дисбалансом свертывающих и противосвертывающих белков, дисфункцией тромбоцитов и их дефицитом. В этой статье авторы поставили перед собой цель обобщить и актуализировать существующие на данный момент знания о молекулярных механизмах, обусловливающих тромбогеморрагический риск при онкологических заболеваниях. 

Об авторах

Е. М. Кольцова
ФГБУ «Национальный медицинский исследовательский центр детской гематологии, онкологии и иммунологии им. Дмитрия Рогачева» Минздрава России; ФГБУН Центр теоретических проблем физико-химической фармакологии РАН
Россия

ведущий научный сотрудник лаборатории трансляционной медицины, 117997, Москва, ул. Саморы Машела, 1;

заместитель директора по науке–ученый секретарь, Москва



Г. С. Свидельская
ФГБУ «Национальный медицинский исследовательский центр детской гематологии, онкологии и иммунологии им. Дмитрия Рогачева» Минздрава России; ФГБУН Центр теоретических проблем физико-химической фармакологии РАН
Россия

117997, Москва, ул. Саморы Машела, 1



Ю. А. Шифрин
ФГБУ «Национальный медицинский исследовательский центр детской гематологии, онкологии и иммунологии им. Дмитрия Рогачева» Минздрава России
Россия

117997, Москва, ул. Саморы Машела, 1



Ф. И. Атауллаханов
ФГБУ «Национальный медицинский исследовательский центр детской гематологии, онкологии и иммунологии им. Дмитрия Рогачева» Минздрава России; ФГБУН Центр теоретических проблем физико-химической фармакологии РАН
Россия

117997, Москва, ул. Саморы Машела, 1



Список литературы

1. Athale U.H., Chan A.K.C. Thrombosis in children with acute lymphoblastic leukemia: Part I. Epidemiology of thrombosis in children with acute lymphoblastic leukemia. Thromb Res 2003; 111: 125–31. DOI: 10.1016/j.thromres.2003.10.013

2. Жарков П.А., Шифрин Ю.А., Новичкова Г.А. Эффективность антитромботической терапии тромбозов глубоких вен у детей с заболеваниями крови. Вопросы гематологии/ онкологии и иммунопатологии в педиатрии 2019; 18 (1): 34–42. DOI: 10.24287/1726-1708-2019-18-1-34-42

3. Mittelman M., Zeidman A. Platelet function in the myelodysplastic syndromes. Int J Hematol 2000; 71: 95–8.

4. Kit O.I., Frantsiyants E.M., Kozlova L.S., Rostorguev E.E., Balyazin-Parfenov I.V., Pogorelova Yu.A. A plasminogen regulation system in brain tumors. Zh Vopr Neirokhir Im N N Burdenko 2017; 81 (2): 22–7.

5. Pickering W., Gray E., Goodall A.H., Ran S., Thorpe P.E., Barrowcliffe T.W. Characterization of the cell-surface procoagulant activity of T-lymphoblastoid cell lines. J Thromb Haemost 2004; 2: 459–67.

6. Campello E., Ilich A., Simioni P., Key N.S. The relationship between pancreatic cancer and hypercoagulability: a comprehensive review on epidemiological and biological issues. Br J Cancer 2019; 121: 359– 71.

7. Nadir Y., Brenner B., Gingis-Velitski S., Levy-Adam F., Ilan N., Zcharia E., et al. Heparanase induces tissue factor pathway inhibitor expression and extracellular accumulation in endothelial and tumor cells. Thromb Haemost 2008; 99: 133–41.

8. Sierko E., Wojtukiewicz M.Z., Zimnoch L., Kisiel W. Expression of tissue factor pathway inhibitor (TFPI) in human breast and colon cancer tissue. Thromb Haemost 2010; 103: 198–204.

9. Molnar S., Guglielmone H., Lavarda M., Rizzi M.L., Jarchum G. Procoagulant factors in patients with cancer. Hematology 2007; 12: 555–9.

10. Owens A.P., Mackman N. Microparticles in hemostasis and thrombosis. Circ Res 2011; 108: 1284–97.

11. Falanga A., Marchetti M., Russo L. The mechanisms of cancer-associated thrombosis. Thromb Res 2015; 135: S8–11.

12. Falanga A., Tartari C.J., Marchetti M. Microparticles in tumor progression. Thromb Res 2012; 129 Suppl: S132– 6.

13. Kim H.K., Song K.S., Park Y.S., Kang Y.H., Lee Y.J., Lee K.R., et al. Elevated levels of circulating platelet microparticles, VEGF, IL-6 and RANTES in patients with gastric cancer: possible role of a metastasis predictor. Eur J Cancer 2003; 39: 184–91.

14. Schwarzenbach H., Hoon D.S.B., Pantel K. Cell-free nucleic acids as biomarkers in cancer patients. Nat Rev Cancer 2011; 11: 426–37.

15. Earl J., Garcia-Nieto S., Martinez-Avila J.C., Montans J., Sanjuanbenito A., Rodríguez-Garrote M., et al. Circulating tumor cells (Ctc) and kras mutant circulating free Dna (cfdna) detection in peripheral blood as biomarkers in patients diagnosed with exocrine pancreatic cancer. BMC Cancer 2015; 15: 797.

16. Campello E., Henderson M.W., Noubouossie D.F., Simioni P., Key N.S. Contact System Activation and Cancer: New Insights in the Pathophysiology of Cancer-Associated Thrombosis. Thromb Haemost 2018; 118: 251–65.

17. Noubouossie D.F., Whelihan M.F., Yu Y.-B., Sparkenbaugh E., Pawlinski R., Monroe D.M., et al. In vitro activation of coagulation by human neutrophil DNA and histone proteins but not neutrophil extracellular traps. Blood 2017; 129: 1021–9.

18. Swystun L.L., Mukherjee S., Liaw P.C. Breast cancer chemotherapy induces the release of cell-free DNA, a novel procoagulant stimulus. J Thromb Haemost 2011; 9: 2313–21.

19. Rousseau A., Van Dreden P., Mbemba E., Elalamy I., Larsen A., Gerotziafas G.T. Cancer cells BXPC3 and MCF7 differentially reverse the inhibition of thrombin generation by apixaban, fondaparinux and enoxaparin. Thromb Res 2015; 136: 1273–9.

20. Pavón M.A., Arroyo-Solera I., Céspedes M.V., Casanova I., León X., Mangues R. uPA/uPAR and SERPINE1 in head and neck cancer: role in tumor resistance, metastasis, prognosis and therapy. Oncotarget 2016; 7: 57351–66.

21. Fang H., Jin J., Huang D., Yang F., Guan X. PAI-1 induces Src inhibitor resistance via CCL5 in HER2-positive breast cancer cells. Cancer Sci 2018; 109: 1949–57.

22. Falanga A., Panova-Noeva M., Russo L. Procoagulant mechanisms in tumour cells. Best Pract Res Clin Haematol 2009; 22: 49–60.

23. Furuta J., Kaneda A., Umebayashi Y., Otsuka F., Sugimura T., Ushijima T. Silencing of the thrombomodulin gene in human malignant melanoma. Melanoma Res 2005; 15: 15–20.

24. Schlesinger M. Role of platelets and platelet receptors in cancer metastasis. J Hematol Oncol 2018; 11: 125.

25. Heinmuller E., Weinel R.J., Heidtmann H.H., Salge U., Seitz R., Schmitz I., et al. Studies on tumorcell-induced platelet aggregation in human lung cancer cell lines. J Cancer Res Clin Oncol 1996; 122: 735– 44.

26. Mezouar S., Frère C., Darbousset R., Mege D., Crescence L., Dignat-George F., et al. Role of platelets in cancer and cancer-associated thrombosis: Experimental and clinical evidences. Thromb Res 2016; 139: 65–76.

27. Srivastava A., Nikamo P., Lohcharoenkal W., Li D., Meisgen F., Xu Landén N., et al. MicroRNA-146a suppresses IL-17-mediated skin inflammation and is genetically associated with psoriasis. J Allergy Clin Immunol 2017; 139: 550–61.

28. Adesanya M.A., Maraveyas A., Madden L.A. PO-27-Thrombin generation in pancreatic cancer and multiple myeloma with use of calibrated automated thrombography. Thromb Res 2016; 140: S186.

29. Bambace N.M., Holmes C.E. The platelet contribution to cancer progression. J Thromb Haemost 2011; 9: 237–49.

30. Suzuki-Inoue K. A novel Syk-dependent mechanism of platelet activation by the C-type lectin receptor CLEC2. Blood 2006; 107: 542–9. 3

31. Grace R.F., Dahlberg S.E., Neuberg D., Sallan S.E., Connors J.M., Neufeld E.J., et al. The frequency and management of asparaginase-related thrombosis in paediatric and adult patients with acute lymphoblastic leukaemia treated on Dana-Farber Cancer Institute consortium protocols. Br J Haematol 2011; 152: 452–9. DOI: 10.1111/j.1365-2141.2010.08524.x

32. Athale U.H., Siciliano S.A., Crowther M., Barr R.D., Chan A.K.C. Thromboembolism in children with acute lymphoblastic leukaemia treated on Dana-Farber Cancer Institute protocols: Effect of age and risk stratification of disease. Br J Haematol 2005; 129: 803–10. DOI: 10.1111/j.1365-2141.2005.05528.x

33. Barbui T., Finazzi G., Grassi A., Marchioli R. Thrombosis in cancer patients treated with hematopoietic growth factors--a meta-analysis. On behalf of the Subcommittee on Haemostasis and Malignancy of the Scientific and Standardization Committee of the ISTH. Thromb Haemost 1996; 75: 368–71.

34. Topcuoglu P., Arat M., Dalva K., Özcan M. Administration of granulocyte-colony-stimulating factor for allogeneic hematopoietic cell collection may induce the tissue factor-dependent pathway in healthy donors. Bone Marrow Transplant 2004; 33: 171–6. DOI: 10.1038/sj.bmt.1704341

35. Jørgensen K.A., Sørensen P., Freund L. Effect of glucocorticosteroids on some coagulation tests. Acta Haematol 1982; 68: 39–42. DOI: 10.1159/000206946

36. Escudier S.M., Kantarjian H.M., Estey E.H. Thrombosis in patients with acute promyelocytic leukemia treated with and without all-trans retinoic acid. Leuk Lymphoma 1996; 20: 435–9. DOI: 10.3109/10428199609052425

37. Goldschmidt N., Gural A., Ben Yehuda D. Extensive splenic infarction, deep vein thrombosis and pulmonary emboli complicating induction therapy with all-transretinoic acid (ATRA) for acute promyelocytic leukemia. Leuk Lymphoma 2003; 44: 1433–7. DOI: 10.1080/1042819031000076963

38. Wang J., Weiss I., Svoboda K., Kwaan H.C. Thrombogenic role of cells undergoing apoptosis. Br J Haematol 2001; 115: 382–91. DOI: 10.1046/j.1365-2141.2001.03095.x

39. Montesinos P., Sanz M.A. The differentiation syndrome in patients with acute promyelocytic leukemia: Experience of the pethema group and review of the literature. Mediterr J Hematol Infect Dis 2011; 3: e2011059. DOI: 10.4084/MJHID.2011.059

40. Mahadeo K.M., Dhall G., Panigrahy A., Lastra C., Ettinger L.J. Subacute methotrexate neurotoxicity and cerebral venous sinus thrombosis in a 12-year old with acute lymphoblastic leukemia and methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism: Homocysteine-mediated methotrexate neurotoxicity via direct endothelial injury. Pediatr Hematol Oncol 2010; 27: 46–52. DOI: 10.3109/08880010903341904

41. Silverstein F.S., Johnston M.V. A model of methotrexate encephalopathy: Neurotransmitter and pathologic abnormalities. J Child Neurol 1986; 1: 351–7. DOI: 10.1177/088307388600100406

42. Hanson N.Q., Aras O., Yang F., Tsai M.Y. C677T and A1298C polymorphisms of the methylenetetrahydrofolate reductase gene: incidence and effect of combined genotypes on plasma fasting and post-methionine load homocysteine in vascular disease. Clin Chem 2001; 47: 661–6.

43. Quinn C.T., Griener J.C., Bottiglieri T., Kamen B.A. Methotrexate, homocysteine, and seizures. J Clin Oncol 1998; 16: 393–4.

44. Grem J.L., McAtee N., Murphy R.F., Hamilton J.M., Balis F., Steinberg S., et al. Phase I and pharmacokinetic study of recombinant human granulocyte- macrophage colony-stimulating factor given in combination with fluorouracil plus calcium leucovorin in metastatic gastrointestinal adenocarcinoma. J Clin Oncol 1994; 12: 560–8. DOI: 10.1200/JCO.1994.12.3.560

45. Kinhult S., Albertsson M., Eskilsson J., Cwikiel M. Antithrombotic treatment in protection against thrombogenic effects of 5-fluorouracil on vascular endothelium: a scanning microscopy evaluation. Scanning 2001; 23: 1–8.

46. Licciardello J.T.W., Moake J.L., Rudy C.K., Karp D.D., Hong W.K. Elevated plasma von Willebrand factor levels and arterial occlusive complications associated with cisplatin-based chemotherapy. Oncology 1985; 42: 296–300. DOI: 10.1159/000226049

47. Starling N., Rao S., Cunningham D., Iveson T., Nicolson M., Coxon F., et al. Thromboembolism in patients with advanced gastroesophageal cancer treated with anthracycline, platinum, and fluoropyrimidine combination chemotherapy: A report from the UK National Cancer Research Institute Upper Gastrointestinal Clinical Studies Group. J Clin Oncol 2009; 27: 3786–93. DOI: 10.1200/JCO.2008.19.4274

48. Weijl N.I., Rutten M.F.J., Zwinderman A.H., Jan Keizer H., Nooy M.A., Rosendaal F.R., et al. Thromboembolic events during chemotherapy for germ cell cancer: A cohort study and review of the literature. J Clin Oncol 2000; 18: 2169–78. DOI: 10.1200/JCO.2000.18.10.2169

49. Ranpura V., Hapani S., Wu S. Treatment-related mortality with bevacizumab in cancer patients: A meta-analysis. JAMA 2011; 305: 487–94. DOI: 10.1001/jama.2011.51

50. Giezen T.J., Mantel-Teeuwisse A.K., ten Berg M.J., Straus S.M.J.M., Leufkens H.G.M., van Solinge W.W., et al. Rituximab-induced thrombocytopenia: a cohort study. Eur J Haematol 2012; 89: 256–66.

51. Baldo B.A. Adverse events to monoclonal antibodies used for cancer therapy focus on hypersensitivity responses. Oncoimmunology 2013; 2: e26333. DOI: 10.4161/onci.26333

52. Shiuan E., Beckermann K.E., Ozgun A., Kelly C., McKean M., McQuade J., et al. Thrombocytopenia in patients with melanoma receiving immune checkpoint inhibitor therapy. J Immunother Cancer 2017; 5: 8. DOI: 10.1186/s40425-017-0210-0

53. Bishton M.J., Harrison S.J., Martin B.P., McLaughlin N., James C., Josefsson E.C., et al. Deciphering the molecular and biologic processes that mediate histone deacetylase inhibitor-induced thrombocytopenia. Blood 2011; 117: 3658–68. DOI: 10.1182/blood-2010-11-318055

54. Ali A., Bluteau O., Messaoudi K., Palazzo A., Boukour S., Lordier L., et al. Thrombocytopenia induced by the histone deacetylase inhibitor abexinostat involves p53-dependent and -independent mechanisms. Cell Death Dis 2013; 4: e738.

55. Rajappa S., Varadpande L., Paul T.R., Digumarti R. Imatinib mesylate induced immune thrombocytopenia. Leuk Lymphoma 2007; 48: 2261–3.

56. Barak A.F., Bonstein L., Lauterbach R., Naparstek E., Tavor S. Tyrosine kinase inhibitors induced immune thrombocytopenia in chronic myeloid leukemia? Hematol Rep 2011; 3: е29. DOI: 10.4081/hr.2011.e29

57. Ten Berg M.J., van den Bemt P.M.L.A., Shantakumar S., Bennett D., Voest E.E., Huisman A., et al. Thrombocytopenia in adult cancer patients receiving cytotoxic chemotherapy: results from a retrospective hospital-based cohort study. Drug Saf 2011; 34: 1151–60.

58. Lambert M.P., Rauova L., Bailey M., Sola-Visner M.C., Kowalska M.A., Poncz M. Platelet factor 4 is a negative autocrine in vivo regulator of megakaryopoiesis: clinical and therapeutic implications. Blood 2007; 110: 1153–60.

59. Tamamyan G., Danielyan S., Lambert M.P. Chemotherapy induced thrombocytopenia in pediatric oncology. Crit Rev Oncol Hematol 2016; 99: 299–307.

60. Weycker D., Hatfield M., Grossman A., Hanau A., Lonshteyn A., Sharma A., et al. Risk and consequences of chemotherapy-induced thrombocytopenia in US clinical practice. BMC Cancer 2019; 19: 151. DOI: 10.1186/s12885-019-5354-5


Рецензия

Для цитирования:


Кольцова Е.М., Свидельская Г.С., Шифрин Ю.А., Атауллаханов Ф.И. Молекулярные механизмы нарушения гемостаза в онкологии. Вопросы гематологии/онкологии и иммунопатологии в педиатрии. 2021;20(4):191-198. https://doi.org/10.24287/1726-1708-2021-20-4-191-198

For citation:


Koltsova E.M., Svidelskaya G.S., Shifrin Yu.A., Ataullakhanov F.I. Molecular mechanisms of hemostasis impairment in oncology. Pediatric Hematology/Oncology and Immunopathology. 2021;20(4):191-198. (In Russ.) https://doi.org/10.24287/1726-1708-2021-20-4-191-198

Просмотров: 64


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1726-1708 (Print)
ISSN 2414-9314 (Online)