Хронический миелолейкоз у детей: редкая и уникальная болезнь
https://doi.org/10.24287/1726-1708-2022-21-1-156-172
Аннотация
Хронический миелолейкоз (ХМЛ) является редким для детского возраста заболеванием и составляет 2–3% лейкемий у детей до 15 лет. Вследствие низкой частоты ХМЛ и недостаточного количества достоверных данных, полученных в ходе клинических исследований, практические стандарты оказания помощи детям и подросткам с данным заболеванием, в отличие от взрослых, не разработаны. В некоторых странах дети с ХМЛ лечатся взрослыми гематологами. Многие детские онкогематологи следуют руководствам по лечению ХМЛ, предназначенным для взрослых. Тем не менее существуют четкие различия между ХМЛ у взрослых и детей как в отношении клинических проявлений и динамики заболевания, так и в плане биологии этого процесса, а также факторов организма-хозяина, которые должны приниматься во внимание при пожизненном лечении детского ХМЛ. Цель настоящего обзора – представить основные сведения об эпидемиологии, патофизиологии и клинико-лабораторных характеристиках ХМЛ и изложить современные подходы к диагностике и лечению этого заболевания у детей и подростков.
Об авторе
Э. Г. БойченкоРоссия
Бойченко Эльмира Госмановна, д-р мед. наук, заведующая отделением онкогематологии, главный внештатный детский специалист гематолог Комитета по здравоохранению Санкт-Петербурга
198205, Санкт-Петербург, ул. Авангардная, 14А
Список литературы
1. Hijiya N., Schultz K.R., Metzler M., Millot F., Suttorp M. Pediatric chronic myeloid leukemia is a unique disease that requires a different approach. Blood 2016; 127 (4): 392–9. DOI: 10.1182/blood-2015-06-648667
2. Hijiya N., Millot F., Suttorp M. Chronic myeloid leukemia in children: Clinical findings, management, and unanswered questions. Pediatr Clin North Am 2015; 62 (1): 107–19. DOI: 10.1016/j.pcl.2014.09.008
3. Castagnetti F., Gugliotta G., Baccarani M., Breccia M., Specchia G., Levato L. et al. GIMEMA CML Working Party. Differences among young adults, adults and elderly chronic myeloid leukemia patients. Ann Oncol 2015; 26 (1):185–92. DOI: 10.1093/annonc/mdu490
4. Hijiya N., Suttorp M. How I treat chronic myeloid leukemia in children and adolescents. Blood 2019; 133 (22): 2374–84. DOI: 10.1182/blood.2018882233
5. Борисевич М.В. Хронический миелоидный лейкоз у детей. Вопросы гематологии/онкологии и иммунопатологии в педиатрии 2016; 15 (4): 51–6.
6. Mattano L., Nachman J., Ross J., Stock W. Leukemias. In: Cancer Epidemiology in Older Adolescents and Young Adults 15 to 29 Years of Age, Including SEER Incidence and Survival: 1975–2000; Bleyer A., O’Leary M., Barr R., Ries L.A.G. (eds.); National Cancer Institute, NIH: Bethesda, MD, USA; 2006. Рp. 39–51.
7. Millot F., Traore P., Guilhot J., Nelken B., Leblanc T., Leverger G., et al. Clinical and biological features at diagnosis in 40 children with chronic myeloid leukemia. Pediatrics 2005; 116 (1): 140–3. doi: 10.1542/peds.2004-2473
8. Bizzozero O.J. Jr, Johnson K.G., Ciocco A. Radiation-related leukemia in Hiroshima and Nagasaki, 1946-I. Distribution, incidence and appearance time. N Engl J Med 1966; 274 (20): 1095–101. DOI: 10.1056/NEJM196605192742001
9. Corso A., Lazzarino M., Morra E., Merante S., Astori C., Bernasconi P., et al. Chronic myelogenous leukemia and exposure to ionizing radiation – a retrospective study of 443 patients. Ann Hematol 1995; 70 (2): 79–82. DOI: 10.1007/BF01834384
10. Finch S.C., Linet M.S. Chronic Leukaemias. Baillieres Clin Haematol 1992; 5 (1): 27–56. DOI: 10.1016/s0950-3536(11)80034-x
11. Radivoyevitch T., Jankovic G.M., Tiu R.V., Saunthararajah Y., Jackson R.C., Hlatky L.R., et al, Sex differences in the incidence of chronic myeloid leukemia. Radiat Environ Biophys 2014; 53 (1): 55–63. doi: 10.1007/s00411-013-0507-4
12. Ernst T., Busch M., Rinke J., Ernst J., Haferlach C., Beck J.F., et al. Frequent ASXL1 mutations in children and young adults with chronic myeloid leukemia. Leukemia 2018; 32 (9): 2046–9. DOI: 10.1038/s41375-018-0157-2
13. Togasaki E., Takeda J., Yoshida K., Shiozawa Y., Takeuchi M., Oshima M., et al. Frequent somatic mutations in epigenetic regulators in newly diagnosed chronic myeloid leukemia. Blood Cancer J 2017; 7 (4): e559. DOI: 10.1038/bcj.2017.36
14. Suttorp M., Millot F., Sembill S., Deutsch H., Metzler M. Definition, Epidemiology, Pathophysiology, and Essential Criteria for Diagnosis of Pediatric Chronic Myeloid Leukemia. Cancers (Basel) 2021; 13 (4): 798. DOI: 10.3390/cancers13040798
15. Alsop S., Sanger W.G., Elenitoba-Johnson K.S., Lim M.S. Chronic myeloid leukemia as a secondary malignancy after ALK-positive anaplastic large cell lymphoma. Hum Pathol 2007; 38 (10): 1576–80. DOI: 10.1016/j.humpath.2007.05.018
16. Bauduer F., Ducout L., Dastugue N., Marolleau J.P. Chronic myeloid leukemia as a secondary neoplasm after anticancer radiotherapy: A report of three cases and a brief review of the literature. Leuk Lymphoma 2002; 43 (5): 1057–60. DOI: 10.1080/10428190290021533
17. Millett R., Aggarwal A., Tabbara I., Nassereddine S. Chronic Myeloid Leukemia as Secondary Malignancy Following the Treatment of Hodgkin Lymphoma: A Case Series. Anticancer Res 2019; 39 (8): 4333–5. DOI: 10.21873/anticanres.13600
18. Zahra K., Ben Fredj W., Ben Youssef Y., Zaghouani H., Chebchoub I., Zaier M. et al. Chronic myeloid leukemia as a secondary malignancy after lymphoma in a child. A case report and review of the literature. Onkologie 2012; 35 (11): 690–3. DOI: 10.1159/000343952
19. Cortes J.E., Talpaz M., Beran M., O’Brien S.M., Rios M.B., Stass S., Kantarjian H.M. Philadelphia chromosome-negative chronic myelogenous leukemia with rearrangement of the breakpoint cluster region. Long-term follow-up results. Cancer 1995; 75 (2): 464–70. DOI: 10.1002/1097-0142(19950115)75:2<464::aid-cncr2820750209>3.0.co;2-e
20. Deininger M.W., Goldman J.M., Melo J.V. The molecular biology of chronic myeloid leukemia. Blood 2000; 96 (10): 3343–56.
21. Carofiglio F., Lopalco A., Lopedota A., Cutrignelli A., Nicolotti O., Denora N., еt al. Bcr–Abl Tyrosine Kinase Inhibitors in the Treatment of Pediatric CML. Int J Mol Sci 2020; 21 (12): 4469 DOI: 10.3390/ijms21124469
22. Holyoake T.L., Vetrie D. The chronic myeloid leukemia stem cell: Stemming the tide of persistence. Blood 2017; 129 (12): 1160–95. DOI: 10.1182/blood-2016-09-696013
23. Perrotti D., Silvestri G., Stramucci L., Yu J., Trotta R. Cellular and Molecular Networks in Chronic Myeloid Leukemia: The Leukemic Stem, Progenitor and Stromal Cell Interplay. Curr Drug Targets 2017; 18 (4): 377–88. DOI: 10.2174/13894501176 66160615074120
24. Adler R., Viehmann S., Kuhlisch E., Martiniak Y., Röttgers S., Harbott J., еt al. Correlation of BCR/ABL transcript variants with patients’ characteristics in childhood chronic myeloid leukaemia. Eur J Haematol 2009; 82 (2): 112–8. DOI: 10.1111/j.1600-0609.2008.01170.x
25. Mughal T.I., Radich J.P., Deininger M.W., Apperley J.F., Hughes T.P., Harrison C.J., еt al. Chronic myeloid leukemia: Reminiscences and dreams. Haematologica 2016; 101 (5): 541–58. DOI: 10.3324/haematol.2015.139337
26. Quintás-Cardama A., Cortes J. Molecular biology of bcr-abl1-positive chronic myeloid leukemia. Blood 2009; 113 (8): 1619–30. DOI: 10.1182/blood-2008-03-144790
27. Barnes D.J., Melo J.V. Cytogenetic and molecular genetic aspects of chronic myeloid leukaemia. Acta Haematol 2002; 108 (4): 180–202. DOI: 10.1159/000065655
28. Baccarani M., Castagnetti F., Gugliotta G., Rosti G., Soverini S., Albeer A., Pfirrmann M. International BCR– ABL Study Group. The proportion of different BCR-ABL1 transcript types in chronic myeloid leukemia. An international overview. Leukemia 2019; 33 (5): 1173–83. DOI: 10.1038/s41375-018-0341-4
29. Krumbholz M., Karl M., Tauer J.T., Thiede C., Rascher W., Suttorp M., Metzler M. Genomic BCR–ABL1 breakpoints in pediatric chronic myeloid leukemia. Genes Chromosomes Cancer 2012; 51 (11): 1045– 53. DOI: 10.1002/gcc.21989
30. Branford S., Wang P., Yeung D.T., Thomson D., Purins A., Wadham C., еt al. Integrative genomic analysis reveals cancer-associated mutations at diagnosis of CML in patients with high-risk disease. Blood 2018; 132 (9): 948–61. DOI: 10.1182/blood-2018-02-832253
31. Shanmuganathan N., Branford S. The Hidden Pathogenesis of CML: Is BCR–ABL1 the First Event? Curr Hematol Malig Rep 2019; 14 (6): 501–6. DOI: 10.1007/s11899-019-00549-1
32. Chae H.D., Murphy L.C., Donato M., et al. Comparison of the transcriptomic signature of pediatric vs. adult CML and normal bone marrow stem cells [abstract]. Blood 2018; 132 (Suppl 1). Abstract 4246.
33. Branford S., Hughes T.P., Rudzki Z. Dual transcription of b2a2 and b3a2 BCR–ABL transcripts in chronic myeloid leukaemia is confined to patients with a linked polymorphism within the BCR gene. Br J Haematol 2002; 117 (4): 875–7.
34. Meissner R.V., Dias P.M., Covas D.T., Job F., Leite M., Nardi N.B. A polymorphism in exon b2 of the major breakpoint cluster region (M-bcr) identified in chronic myeloid leukaemia patients. Br J Haematol 1998; 103 (1): 224–6.
35. De la Fuente J., Baruchel A., Biondi A., de Bont E., Dresse M.F., Suttorp M., Millot F.; International BFM Group (iBFM) Study Group Chronic Myeloid Leukaemia Committee. Managing children with chronic myeloid leukaemia (CML): Recommendations for the management of CML in children and young people up to the age of 18 years. Br J Haematol 2014; 167 (1): 33–47. DOI: 10.1111/bjh.12977
36. Athale U., Hijiya N., Patterson B.C., Bergsagel J., Andolina J.R., Bittencourt H., et al. Management of chronic myeloid leukemia in children and adolescents: Recommendations from the Children’s Oncology Group CML Working Group. Pediatr Blood Cancer 2019; 66 (9): e27827. DOI: 10.1002/pbc.27827
37. Millot F., Dupraz C., Guilhot J., Suttorp M., Brizard F., Leblanc T., et al. Additional cytogenetic abnormalities and variant t(9;22) at the diagnosis of childhood chronic myeloid leukemia: The experience of the International Registry for Chronic Myeloid Leukemia in Children and Adolescents. Cancer 2017; 123 (18): 3609–16. DOI: 10.1002/cncr.30767
38. Hussein K., Stucki-Koch A., Göhring G., Kreipe H., Suttorp M. Increased megakaryocytic proliferation, pro-platelet deposition and expression of fibrosis-associated factors in children with chronic myeloid leukaemia with bone marrow fibrosis. Leukemia 2017; 31 (7): 1540–6. DOI: 10.1038/leu.2017.73
39. Buesche G., Hehlmann R., Hecker H., Heimpel H., Heinze B., Schmeil A., et al. Marrow fibrosis, indicator of therapy failure in chronic myeloid leukemia – Prospective long-term results from a randomized-controlled trial. Leukemia 2003; 17 (12): 2444–53. DOI: 10.1038/sj.leu.2403172
40. Buesche G., Ganser A., Schlegelberger B., von Neuhoff N., Gadzicki D., Hecker H., et al. Marrow fibrosis and its relevance during imatinib treatment of chronic myeloid leukemia. Leukemia 2007; 21 (12): 2420–7. DOI: 10.1038/sj.leu.2404917
41. Hidalgo-López J.E., Kanagal-Shamanna R., Quesada A.E., Gong Z., Wang W., Hu S., et al. Bone marrow core biopsy in 508 consecutive patients with chronic myeloid leukemia: Assessment of potential value. Cancer 2018; 124 (19): 3849–55. DOI: 10.1002/cncr.31663
42. Hasle H. Myelodysplastic and myeloproliferative disorders of childhood. Hematol Am Soc Hematol Educ Program 2016; 2016 (1): 598–604. DOI: 10.1182/asheducation-2016.1.598
43. Luu M.H., Press R.D. BCR–ABL PCR testing in chronic myelogenous leukemia: Molecular diagnosis for targeted cancer therapy and monitoring. Expert Rev Mol Diagn 2013; 13 (7): 749–62. DOI: 10.1586/14737159.2013.835573
44. NCCN Clinical Practice Guidelines in Oncology; Chronic Myelogenous Leukemia, Version 1.2019: National Comprehensive Cancer Network 2018. NCCN Guidelines Version 2. Chronic Myeloid Leukemia. Available online: www.nccn.org/professionals/physician_gls/pdf/cml.pdf (accessed on 3 December 2020).
45. Suttorp M., Bornhäuser M., Metzler M., Millot F., Schleyer E. Pharmacology and pharmacokinetics of imatinib in pediatric patients. Expert Rev Clin Pharmacol 2018; 11 (3): 219–31. DOI: 10.1080/17512433.2018.1398644
46. Krumbholz M., Goerlitz K., Albert C., Lawlor J., Suttorp M., Metzler M. Large amplicon droplet digital PCR for DNA-based monitoring of pediatric chronic myeloid leukaemia. J Cell Mol Med 2019; 23 (8): 4955–61. DOI: 10.1111/jcmm.14321
47. Branford S., Kim D.D.H., Apperley J.F., Eide C.A., Mustjoki S., Ong S.T., еt аl. Laying the foundation for genomically-based risk assessment in chronic myeloid leukemia. Leukemia 2019; 33 (8): 1835–50. DOI: 10.1038/s41375-019-0512-y
48. Cumbo C., Impera L., Minervini C.F., Orsini P., Anelli L., Zagaria A., et al. Genomic BCR–ABL1 breakpoint characterization by a multi-strategy approach for “personalized monitoring” of residual disease in chronic myeloid leukemia patients. Oncotarget 2018; 9 (13): 10978–86. DOI: 10.18632/oncotarget.23971
49. Machova Polakova K., Zizkova H., Zuna J., Motlova E., Hovorkova L., Gottschalk A., et al. Analysis of chronic myeloid leukaemia during deep molecular response by genomic PCR: A traffic light stratification model with impact on treatment-free remission. Leukemia 2020; 34 (8): 2113–24. DOI: 10.1038/s41375-020-0882-1
50. Pagani I.S., Dang P., Kommers I.O., Goyne J.M., Nicola M., Saunders V.A., et al. BCR–ABL1 genomic DNA PCR response kinetics during first-line imatinib treatment of chronic myeloid leukemia. Haematologica 2018; 103 (12): 2026– 32. DOI: 10.3324/haematol.2018. 189787
51. Soverini S., de Benedittis C., Mancini M., Martinelli G. Mutations in the BCR-ABL Kinase Domain and Elsewhere in Chronic Myeloid Leukemia. Clin Lymphoma Myeloma Leuk 2015; 15 Suppl: S120–8. DOI: 10.1016/j.clml.2015.02.035
52. Suttorp M., Metzler M., Millot F. Horn of plenty: Value of the international registry for pediatric chronic myeloid leukemia. World J Clin Oncol 2020; 11 (6): 308–19. DOI: 10.5306/wjco.v11.i6.308
53. Branford S., Fletcher L., Cross N.C., Müller M.C., Hochhaus A., Kim D.W., et al. Desirable performance characteristics for BCR-ABL measurement on an international reporting scale to allow consistent interpretation of individual patient response and comparison of response rates between clinical trials. Blood 2008; 112 (8): 3330–8. DOI: 10.1182/blood-2008-04-150680
54. Müller M.C., Cross N.C., Erben P., Schenk T., Hanfstein B., Ernst T., et аl Harmonization of molecular monitoring of CML therapy in Europe. Leukemia 2009; 23 (11): 1957–63. DOI: 10.1038/leu.2009.168
55. Millot F., Suttorp M., Guilhot J., Sedlacek, P., Bont, E., Li, C., et al. The International Registry for Chronic Myeloid Leukemia (CML) in Children and Adolescents (I-CML-PedStudy): objectives and preliminary results [abstract]. Blood 2012; 120 (21). Abstract 3741.
56. Pemmaraju N., Kanarjian H., Shan, J., Jabbour Е., Quintas-Cardama А., Verstovsek S., et al. Analysis of outcomes in adolescents and young adults with chronic myelogenous leukemia treated with upfront tyrosine kinase inhibitor therapy. Haematologica 2012; 97 (7): 1029–35. DOI: 10.3324/haematol.2011.056721
57. Mandal P., Mukherjee S.B. Leukemoid Reaction – A Tale of Years. Indian Pediatr 2015; 52 (11): 973–4. DOI: 10.1007/s13312-015-0755-2
58. Sakka V., Tsiodras S., Giamarellos-Bourboulis E.J., Giamarellou H. An update on the etiology and diagnostic evaluation of a leukemoid reaction. Eur J Intern Med 2006; 17 (6): 394–8. DOI: 10.1016/j. ejim.2006.04.004
59. Hoofien A., Yarden-Bilavski H., Ashkenazi S., Chodick G., Livni G. Leukemoid reaction in the pediatric population: Etiologies, outcome, and implications. Eur J Pediatr 2018; 177 (7): 1029–36. DOI: 10.1007/s00431-018-3155-5
60. Karow A., Nienhold R., Lundberg P., Peroni E., Putti, M.C., Randi M.L., Skoda R.C. Mutational profile of childhood myeloproliferative neoplasms. Leukemia 2015; 29 (12): 2407–9. DOI: 10.1038/leu. 2015.205
61. Sekhar M., Prentice H.G., Popat U., Anderson D., Janmohammed R., Roberts I., Britt R.P. Idiopathic myelofibrosis in children. Br J Haematol 1996; 93 (2): 394–7. DOI: 10.1046/j.1365-2141.1996.5051046.x
62. Ding N., Zhang Z., Yang W., Ren L., Zhang Y., Zhang J., et al. Transcriptome Analysis of Monozygotic Twin Brothers with Childhood Primary Myelofibrosis. Genomics Proteomics Bioinformatics 2017; 15 (1):37– 48. doi: 10.1016/j.gpb.2016.12.002
63. Mitton B., de Oliveira S., Pullarkat S.T., Moore T.B. Stem cell transplantation in primary myelofibrosis of childhood. J Pediatr Hematol Oncol 2013; 35 (3): e120–2. DOI: 10.1097/MPH.0b013e31828800cc
64. Niemeyer C.M. JMML genomics and decisions. Hematol. Am Soc Hematol Educ Program 2018; 2018 (1): 307–12. DOI: 10.1182/asheducation-2018.1.307
65. Kratz C.P., Franke L., Peters H., Kohlschmidt N., Kazmierczak B., Finckh U., et al. Cancer spectrum and frequency among children with Noonan, Costello, and cardio-facio-cutaneous syndromes. Br J Cancer 2015; 112 (8): 1392–7. DOI: 10.1038/bjc.2015.75
66. Swerdlow S.H., Campo E., Harris N.L., Jaffe E.S., Pileri S.A., Stein H., et al. (eds.). WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. IARC Press: Lyon, France; 2017.
67. Chang T.Y., Dvorak C.C., Loh M.L. Bedside to bench in juvenile myelomonocytic leukemia: Insights into leukemogenesis from a rare pediatric leukemia. Blood 2014; 124 (16): 2487–97. DOI: 10.1182/blood-2014-03-300319
68. Locatelli F., Niemeyer C.M. How I treat juvenile myelomonocytic leukemia. Blood 2015; 125 (7): 1083– 90. DOI: 10.1182/blood-2014-08-550483
69. Egan D., Radich J. Making the diagnosis, the tools, and risk stratification: More than just BCR-ABL. Best Pract Res Clin Haematol 2016; 29 (3): 252–63. doi: 10.1016/j.beha.2016.10.015
70. Pfirrmann M., Lauseker M., Hoffmann V.S., Hasford J. Prognostic scores for patients with chronic myeloid leukemia under particular consideration of competing causes of death. Ann Hematol 2015; 94 (Suppl 2): S209–18.
71. Millot F., Guilhot J., Suttorp M., Günes A.M., Sedlacek P., De Bont E., et al. Prognostic discrimination based on the EUTOS long-term survival score within the International Registry for Chronic Myeloid Leukemia in children and adolescents. Haematologica 2017; 102: 1704–8.
72. Millot F., Guilhot J., Baruchel A., Petit A., Bertrand Y., Mazingue F., et al. Impact of early molecular response in children with chronic myeloid leukemia treated in the French Glivec phase 4 study. Blood 2014; 124: 2408–10.
73. Andolina J.R., Neudorf S.M., Corey S.J. How I treat childhood CML. Blood 2012; 119: 1821–30.
74. Bower H., Bjorkholm M., Dickman P.W., Hoglund M., Lambert P.C., Andersson T.M. Life expectancy of patients with chronic myeloid leukemia approaches the life expectancy of the general population. J Clin Oncol 2016; 34 (24): 2851–7.
75. Suttorp M., Schulze P., Glauche I., Göhring G., von Neuhoff N., Metzler M., et al. Frontline imatinib treatment in children and adolescents with chronic myeloid leukemia: results from a phase III trial. Leukemia 2018; 32 (7): 1657–69.
76. Millot F., Baruchel A., Guilhot J., Petit А., Leblanc Т., Bertrand Y., et al. Imatinib is effective in children with previously untreated chronic myelogenous leukemia in early chronic phase: results of the French national phase IV trial. J Clin Oncol 2011; 29 (20): 2827–32.
77. Champagne M.A., Fu C.H., Chang M., Chen H., Gerbing R.B., Alonzo Т.А., et al. Higher dose imatinib for children with de novo chronic phase chronic myelogenous leukemia: a report from the hildren’s Oncology Group. Pediatr Blood Cancer 2011; 57 (1): 56–62.
78. De la Fuente J., Baruchel A., Biondi A., de Bont Е., Dresse M.-F., Suttorp M., Millot F.; International BFM Group (iBFM) Study Group Chronic Myeloid Leukaemia Committee. Recommendations for the management of CML in children and young people up to the age of 18 years. Brit J Haematol 2014; 167: 33–47.
79. Gore L., Kearns P.R., de Martino M.L., Lee, De Souza С.А., Bertrand Y. et al. Dasatinib in pediatric patients with chronic myeloid leukemia in chronic phase: results from a phase II trial. J Clin Oncol 2018; 36 (13): 1330–8.
80. Hijiya N., Maschan A., Rizzari C., Shimada H., Dufour C., Goto H., et al. Efficacy and safety of nilotinib in pediatric patients with Philadelphia chromosome–positive (PH1) chronic myeloid leukemia (CML): results from a phase 2 trial [SIOP abstract]. Pediatr Blood Cancer 2017; 64 (S3): 22–23. Abstract number S22.
81. Hijiya N., Zwaan C.M., Rizzari C., Foà R., Abbink F., Lancaster D., et al. Nilotinib in Pediatric patients with Philadelphia chromosome positive (PH+) chronic myeloid leukemia (CML) or PH+ acute lymphoblastic leukemia (ALL): a pharmacokinetic study [ASPHO abstracts]. Pediatr Blood Cancer 2017: S34. Abstract number 315.
82. ITCC Bosutinib Study. Available online: https://www.clinicaltrialsregister.eu/ctr-search/trial/2015-002916-34/NL (accessed on January 3, 2019).
83. Cortes J.E., Saglio G., Kantarjian H.M., Baccarani М., Mayer J., Boqué С., et al. Final 5-year study results of DASISION: the dasatinib versus imatinib study in treatment-naïve chronic myeloid leukemia patients trial. J Clin Oncol 2016; 34: 2333–40.
84. Hochhaus A., Saglio G., Hughes T.P., Larson R.A., Kim D.-W., Issaragrisil S., et al. Long-term benefits and risks of frontline nilotinib vs imatinib for chronic myeloid leukemis in chronic phase: 5-year update of the randomized ENESTnd trial. Leukemia 2016; 30: 1044–55.
85. Suttorp M., Metzler M., Millot F., Shimada Н., Bansal D., Meral Günes А., et al. Generic formulations of imatinib for treatment of Philadelphia chromosome-positive leukemia in pediatric patients. Pediatr Blood Cancer 2018; 65 (12): e27431.
86. Padula W.V., Larson R.A., Dusetzina S.B., Apperley J.F., Hehlmann R., Baccarani М., et al. Cost-effectiveness of tyrosine kinase inhibitor treatment strategies for chronic myeloid leukemia in chronic phase after generic entry of imatinib in the United States. J Natl Cancer Inst 2016; 108 (7): 108–17.
87. Douxfils J., Haguet H., Mullier F., Chatelain C., Graux C., Dogne´ J.M. Association between BCR–ABL tyrosine kinase inhibitors for chronic myeloid leukemia and cardiovascular events, major molecular response, and overall survival: a systematic review and meta-analysis. JAMA Oncol 2016; 2 (5): 625–32.
88. Barber M.C., Mauro M.J., Moslehi J. Cardiovascular care of patients with chronic myeloid leukemia (CML) on tyrosine kinase inhibitor (TKI) therapy. Hematology Am Soc Hematol Educ Program 2017; 2017: 110–4.
89. Patel A.B., O’Hare T., Deininger M.W. Mechanisms of resistance to ABL kinase inhibition in chronic myeloid leukemia and the development of next generation ABL kinase inhibitors. Hematol Oncol Clin North Am 2017; 31 (4): 589–612.
90. Soverini S., Hochhaus A., Nicolini F.E., Gruber F., Lange Т., Saglio G., et al. BCR–ABL kinase domain mutation analysis in chronic myeloid leukemia patients treated with tyrosine kinase inhibitors: recommendations from an expert panel on behalf of European LeukemiaNet. Blood 2011; 118 (5): 1208–15.
91. Branford S., Melo J.V., Hughes T.P. Selecting optimal second-line tyrosine kinase inhibitor therapy for chronic myeloid leukemia patients after imatinib failure: does the BCRABL mutation status really matter? Blood 2009; 114 (27): 5426–35.
92. Shulman D.S., Lee M.A., Lehmann L.E., Margossian S.P. Outcomes following bone marrow transplantation in children with accelerated phase or blast crisis chronic myelogenous leukemia in the era of tyrosine kinase inhibitors. J Pediatr Hematol Oncol 2016; 38 (8): 610–4.
93. Millot F., Guilhot J., Suttorp M., et al. Advanced phases at diagnosis of childhood chronic myeloid leukemia: the experience of the International Registry for Chronic MyeloidLeukemia (CML) in Children and Adolescents (I-CML-Ped Study) [abstract]. Blood 2017; 130 (Suppl 1). Abstract 316.
94. Chaudhury S., Sparapani R., Hu Z.H., Nishihori Т., Abdel-Azim Н., Malone А., et al. Outcomes of allogeneic hematopoietic cell transplantation in children and young adults with chronic myeloid leukemia: a CIBMTR cohort analysis. Biol Blood Marrow Transplant. 2016; 22 (6): 1056–64.
95. Suttorp M., Claviez A., Bader P., Peters C., Gadner H., Ebell W., et al. Allogeneic stem cell transplantation for pediatric and adolescent patients with CML: results from the prospective trial CML-paed I. Klin Padiatr 2009; 221 (6): 351–7.
96. Shah N.P., Rousselot P., Schiffer C., Rea D., Cortes J.E., Milone J., et al. Dasatinib in imatinib-resistant or – intolerant chronic-phase, chronic myeloid leukemia patients: 7-year follow-up of study CA180-034. Am J Hematol 2016; 91 (9): 869–74.
97. Kurosawa H., Tanizawa A., Muramatsu H., Tono С., Watanabe А., Shima Н., et al. Sequential use of second-generation tyrosine kinase inhibitors following imatinib therapy in pediatric chronic myeloid leukemia: a report from the Japanese pediatric leukemia/lymphoma study group. Pediatr Blood Cancer 2018; 65 (12): e27368.
98. Hehlmann R., Saußele S., Voskanyan A., Silver R.T. Management of CML-blast crisis. Best Pract Res Clin Haematol 2016; 29 (3): 295– 307.
99. Jain P., Kantarjian H.M. Ghorab A., Sasaki K., Jabbour E.J., Nogueras Gonzalez G., et al. Prognostic factors and survival outcomes in patients with chronic myeloid leukemia in blast phase in the tyrosine kinase inhibitor era: Cohort study of 477 patients. Cancer 2017; 123 (22): 4391–402.
100. Mukherjee S., Ralaycio M. Accelerated phase CML: Outcomes in Newly Diagnosed vs. Progression From Chronic Phase. Curr Hematol Malig Rep 2016; 11 (2): 86–93.
101. Nair A.P., Barnett M.J., Broady R.C., Hogge D.E., Song K.W., Toze C.L., et al. Allogeneic hematopoietic stem cell transplantation is an effective salvage therapy for patients with chronic myeloid leukemia presenting with advanced disease or failing treatment with tyrosine kinase inhibitors. Biol Blood Marrow Transplant 2015; 21 (8): 1437–44.
102. Saussele S., Richter J., Guilhot J., Gruber F.X., Hjorth-Hansen H., Almeida А. et al.; EURO-SKI investigators. Discontinuation of tyrosine kinase inhibitor therapy in chronic myeloid leukaemia (EURO-SKI): a prespecified interim analysis of a prospective, multicentre, non-randomised, trial. Lancet Oncol 2018; 19 (6): 747–57.
103. Mahon F.X. Treatment-free remission in CML: who, how, and why? Hematology Am Soc Hematol Educ Program 2017; 2017: 102–9.
104. Saußele S., Richter J., Hochhaus A., Mahon F.X. The concept of treatment-free remission in chronic myeloid leukemia. Leukemia 2016; 30 (8): 1638–47.
105. Giona F., Saglio G., Moleti M.L., Piciocchi A., Rea М., Nanni М., et al. Treatment free remission after imatinib discontinuation is possible in paediatric patients with chronic myeloid leukaemia. Br J Haematol 2015; 168 (2): 305–8.
106. Mangiatordi G.F., Alberga D., Altomare C.D., Carotti A., Catto M., Cellamare S., et al. Mind the gap! A journey towards computational toxicology. Mol Inform 2016; 35 (8–9): 294–308. DOI: 10.1002/minf.201501017
107. Castagnetti F., Gugliotta G., Baccarani M., Breccia M., Specchia G., Levato L., et al. A GIMEMA CML Working Party. Differences among young adults, adults and elderly chronic myeloid leukemia patients. Ann Oncol 2015; 26 (1): 185–92. DOI: 10.1093/annonc/mdu490
108. Sokal J.E., Gomez G.A., Baccarani M., Tura S., Clarkson B.D., Cervantes F., et al. Prognostic significance of additional cytogenetic abnormalities at diagnosis of Philadelphia chromosome-positive chronic granulocytic leukemia. Blood 1988; 72 (1): 294–8.
109. Hasford J., Baccarani M., Hoffmann V., Guilhot J., Saussele S., Rosti G. et al. Predicting complete cytogenetic response and subsequent progression-free survival in 2060 patients with CML on imatinib treatment: the EUTOS score. Blood 2011; 118 (3): 686–92.
110. Hasford J., Pfirrmann M., Hehlmann R., Allan N.C., Baccarani M., Kluin-Nelemans J.C., et al; Writing Committee for the Collaborative CML Prognostic Factors Project Group. A new prognostic score for survival of patients with chronic myeloid leukemia treated with interferon alfa. J Natl Cancer Inst 1998; 90 (11): 850–8.
111. Gurrea Salas D., Glauche I., Tauer J.T., Thiede C., Suttorp M. Can prognostic scoring systems for chronic myeloid leukemia as established in adults be applied to pediatric patients? Ann Hematol 2015; 94 (8): 1363–71.
112. Shima H., Tokuyama M., Tanizawa A., Tono С., Hamamoto К., Muramatsu Н., et al. Distinct impact of imatinib on growth at prepubertal and pubertal ages of children with chronic myeloid leukemia. J Pediatr 2011; 159 (4): 676–81. DOI: 10.1016/j.jpeds.2011.03.046
113. Bansal D., Shava U., Varma N., Trehan A., Marwaha R.K. Imatinib has adverse effect on growth in children with chronic myeloid leukemia. Pediatr Blood Cancer 2012; 59 (3): 481–4.
114. Samis J., Lee P., Zimmerman D., Arceci R.J., Suttorp M., Hijiya N. Recognizing endocrinopathies associated with tyrosine kinase inhibitor therapy in children with chronic myelogenous leukemia. Pediatr Blood Cancer 2016; 63 (8): 1332–8.
115. Samis J., Lee P., Zimmerman D., Suttorp M., Hijiya N. The complexity of growth failure in children receiving tyrosine kinase inhibitor therapy for chronic myelogenous leukemia. Pediatr Blood Cancer 2017; 64 (12): e26703.
116. Millot F., Guilhot J., Baruchel A., Petit А., Leblanc Т., Bertrand Y., et al. Growth deceleration in children treated with imatinib for chronic myeloid leukaemia. Eur J Cancer 2014; 50 (18): 3206–11. DOI: 10.1016/j.ejca.2014.10.007
117. Aleman J.O., Farooki A., Girotra M. Effects of tyrosine kinase inhibition on bone metabolism: untargeted consequences of targeted therapies. Endocrine Related Cancer 2014; 21 (3): 247–9. DOI: 10.1530/ERC-12-0400
Рецензия
Для цитирования:
Бойченко Э.Г. Хронический миелолейкоз у детей: редкая и уникальная болезнь. Вопросы гематологии/онкологии и иммунопатологии в педиатрии. 2022;21(1):156-172. https://doi.org/10.24287/1726-1708-2022-21-1-156-172
For citation:
Boychenko E.G. Chronic myeloid leukemia in children: a rare and unique entity. Pediatric Hematology/Oncology and Immunopathology. 2022;21(1):156-172. (In Russ.) https://doi.org/10.24287/1726-1708-2022-21-1-156-172