Preview

Вопросы гематологии/онкологии и иммунопатологии в педиатрии

Расширенный поиск

Low-intensity therapy cures over 40 % of children with rapid Flow-MRD responding ALL: the ALL-MB 2008 trial results

https://doi.org/10.24287/1726-1708-2022-21-2-95-104

Полный текст:

Аннотация

   Serious side effects occur during therapy for childhood acute lymphoblastic leukemia (ALL), and survivors can experience long-term consequences. This study aimed at identifying patients who can be successfully treated with low treatment intensity combining clinical parameters and minimal residual disease (MRD) measurements. The study was approved by the Independent Ethics Committee and the Scientific Council of the Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology. ALL-MB studies used reduced-intensity therapy from the beginning, for standard risk (SR) patients no cyclophosphamide, a very low daunorubicin dose, no high dose of methotrexate, no cranial irradiation. In the ALL-MB 2008 study, 1702 children (49.1 % of all patients) were classified as SR due to favorable initial characteristics. These included 295 patients treated in institutions who took part in a pilot study on MRD measurement using flow cytometry on day 15 and/or at the end of induction (EOI). The most suitable time point for MRD measurement was EOI with threshold 0.1% in 90.5 % of the patients with excellent results: event-free survival of 95 % and overall survival of 97 %, that identified the large proportion of patients (more than 40 % of all ALL patients). The outcome of children with slower MRD response was significantly worse. Initial SR characteristics plus one single MRD measurement at EOI identify more than 40 % of all children with ALL who can be successfully treated with low-intensity regimens as used in the MB protocols.

Об авторах

A. Popov
Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology of Ministry of Healthcare of the Russian Federation
Россия

Alexander M. Popov, MD, PhD, head of Leukemia immunophenotyping laboratory

1 Samory Mashela St., Moscow 117997



G. Henze
Charité – Universitätsmedizin Berlin
Германия

Department of Pediatric Oncology Hematology

Berlin



Yu. Roumiantseva
Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology of Ministry of Healthcare of the Russian Federation
Россия

Moscow



O. Budanov
Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology of Ministry of Healthcare of the Russian Federation; Belarusian Research Center for Pediatric Oncology, Hematology and Immunology
Россия

Moscow, Russian Federation

Borovlyany, Minsk District, Belarus

 



M. Belevtsev
Belarusian Research Center for Pediatric Oncology, Hematology and Immunology
Беларусь

Borovlyany, Minsk District



T. Verzhbitskaya
Regional Children’s Hospital; Research Institute of Medical Cell Technologies
Россия

Ekaterinburg



E. Boyakova
Moscow City Blood Center named after O. K. Gavrilov
Россия

Moscow



L. Movchan
Belarusian Research Center for Pediatric Oncology, Hematology and Immunology
Беларусь

Borovlyany, Minsk District



G. Tsaur
Regional Children’s Hospital; Research Institute of Medical Cell Technologies
Россия

Ekaterinburg



M. Fadeeva
Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology of Ministry of Healthcare of the Russian Federation
Россия

Moscow



S. Lagoyko
Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology of Ministry of Healthcare of the Russian Federation
Россия

Moscow



L. Zharikova
Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology of Ministry of Healthcare of the Russian Federation
Россия

Moscow



N. Myakova
Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology of Ministry of Healthcare of the Russian Federation
Россия

Moscow



D. Litvinov
Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology of Ministry of Healthcare of the Russian Federation
Россия

Moscow



O. Khlebnikova
Regional Children’s Hospital; Research Institute of Medical Cell Technologies
Россия

Ekaterinburg



O. Streneva
Regional Children’s Hospital; Research Institute of Medical Cell Technologies
Россия

Ekaterinburg



E. Stolyarova
Belarusian Research Center for Pediatric Oncology, Hematology and Immunology
Беларусь

Borovlyany, Minsk District



N. Ponomareva
Republican Children’s Hospital
Россия

Moscow



G. Novichkova
Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology of Ministry of Healthcare of the Russian Federation
Россия

Moscow



L. Fechina
Regional Children’s Hospital; Research Institute of Medical Cell Technologies
Россия

Ekaterinburg



O. Aleinikova
Belarusian Research Center for Pediatric Oncology, Hematology and Immunology
Беларусь

Minsk District

Borovlyany



A. Karachunskiy
Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology of Ministry of Healthcare of the Russian Federation
Россия

Moscow



Список литературы

1. Inaba H., Greaves M., Mullighan C. G. Acute lymphoblastic leukaemia. Lancet 2013; 381 (9881): 1943–55.

2. Inaba H., Pui C. H. Advances in the Diagnosis and Treatment of Pediatric Acute Lymphoblastic Leukemia. J Clin Med 2021; 10 (9).

3. Hunger S. P., Mullighan C. G. Acute Lymphoblastic Leukemia in Children. N Engl J Med 2015; 373 (16): 1541–52.

4. Pui C. H. Precision medicine in acute lymphoblastic leukemia. Front Med 2020; 14 (6): 689–700.

5. Oeffinger K. C., Mertens A. C., Sklar C. A., Kawashima T., Hudson M. M., Meadows A. T., et al. Chronic health conditions in adult survivors of childhood cancer. N Engl J Med 2006; 355 (15): 1572–82.

6. Yeh J. M., Hanmer J., Ward Z. J., Leisenring W. M., Armstrong G. T., Hudson M. M., et al. Chronic Conditions and Utility-Based Health-Related Quality of Life in Adult Childhood Cancer Survivors. J Natl Cancer Inst 2016; 108 (9).

7. Qin N., Li Z., Song N., Wilson C. L., Easton J., Mulder H., et al. Epigenetic Age Acceleration and Chronic Health Conditions Among Adult Survivors of Childhood Cancer. J Natl Cancer Inst 2021; 113 (5): 597–605.

8. Pui C. H., Campana D., Pei D., Bowman W. P., Sandlund J. T., Kaste S. C., et al. Treating childhood acute lymphoblastic leukemia with-out cranial irradiation. N Engl J Med 2009; 360 (26): 2730–41.

9. Bhojwani D., Sabin N. D., Pei D., Yang J. J., Khan R. B., Panetta J. C., et al. Methotrexate-induced neurotoxicity and leukoencephalopathy in childhood acute lymphoblastic leukemia. J Clin Oncol 2014; 32 (9): 949–59.

10. Gaynon P. S., Angiolillo A. L., Carroll W. L., Nachman J. B., Trigg M. E., Sather H. N., et al. Long-term results of the children's cancer group studies for childhood acute lymphoblastic leukemia 1983-2002: a Children's Oncology Group Report. Leukemia 2010; 24 (2): 285–97.

11. Moricke A., Zimmermann M., Reiter A., Henze G., Schrauder A., Gadner H., et al. Long-term results of five consecutive trials in child-hood acute lymphoblastic leukemia performed by the ALL-BFM study group from 1981 to 2000. Leukemia 2010; 24 (2): 265–84.

12. Pui C. H., Pei D., Sandlund J. T., Ribeiro R. C., Rubnitz J. E., Raimondi S. C., et al. Long-term results of St Jude Total Therapy Studies 11, 12, 13A, 13B, and 14 for childhood acute lymphoblastic leukemia. Leukemia 2010; 24 (2): 371–82.

13. Salzer W. L., Devidas M., Carroll W. L., Winick N., Pullen J., Hunger S. P., et al. Long-term results of the pediatric oncology group studies for childhood acute lymphoblastic leukemia 1984-2001: a report from the children's oncology group. Leukemia 2010; 24 (2): 355–70.

14. Riehm H., Reiter A., Schrappe M., Berthold F., Dopfer R., Gerein V., et al. Corticosteroid-dependent reduction of leukocyte count in blood as a prognostic factor in acute lymphoblastic leukemia in childhood (therapy study ALL-BFM 83). Klin Padiatr 1987; 199 (3): 151–60.

15. Gaipa G., Basso G., Biondi A., Campana D. Detection of minimal residual disease in pediatric acute lymphoblastic leukemia. Cytometry B Clin Cytom 2013; 84 (6): 359–69.

16. Bruggemann M., Schrauder A., Raff T., Pfeifer H., Dworzak M., Ottmann O. G., et al. Standardized MRD quantification in European ALL trials: proceedings of the Second International Symposium on MRD assessment in Kiel, Germany, 18–20 September 2008. Leukemia 2010; 24 (3): 521–35.

17. Van Dongen J. J., van der Velden V. H., Bruggemann M., Orfao A. Minimal residual disease diagnostics in acute lymphoblastic leukemia: need for sensitive, fast, and standardized technologies. Blood 2015; 125 (26): 3996–4009.

18. O'Connor D., Moorman A. V., Wade R., Hancock J., Tan R. M., Bartram J., et al. Use of Minimal Residual Disease Assessment to Redefine Induction Failure in Pediatric Acute Lymphoblastic Leukemia. J Clin Oncol 2017; 35 (6): 660–7.

19. Basso G., Veltroni M., Valsecchi M. G., Dworzak M. N., Ratei R., Silvestri D., et al. Risk of relapse of childhood acute lymphoblastic leukemia is predicted by flow cytometric measurement of residual disease on day 15 bone marrow. J Clin Oncol 2009; 27 (31): 5168–74.

20. Borowitz M. J., Devidas M., Hunger S. P., Bowman W. P., Carroll A. J., Carroll W. L., et al. Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia and its relationship to other prognostic factors: a Children's Oncology Group study. Blood 2008; 111 (12): 5477–85.

21. Conter V., Bartram C. R., Valsecchi M. G., Schrauder A., Panzer-Grumayer R., Moricke A., et al. Molecular response to treatment redefines all prognostic factors in children and adolescents with B-cell precursor acute lymphoblastic leukemia: results in 3184 patients of the AIEOP-BFM ALL 2000 study. Blood 2010; 115 (16): 3206–14.

22. Van Dongen J. J., Seriu T., Panzer-Grumayer E. R., Biondi A., Pongers-Willemse M. J., Corral L., et al. Prognostic value of minimal residual disease in acute lymphoblastic leukaemia in childhood. Lancet 1998; 352 (9142): 1731–8.

23. Stutterheim J., van der Sluis I. M., de Lorenzo P., Alten J., Ancliffe P., Attarbaschi A., et al. Clinical Implications of Minimal Residual Disease Detection in Infants With KMT2A-Rearranged Acute Lymphoblastic Leukemia Treated on the Interfant-06 Protocol. J Clin Oncol 2021: JCO2002333.

24. Popov A., Buldini B., De Lorenzo P., Disaro S., Verzhbitskaya T., Movchan L., et al. Prognostic value of minimal residual disease measured by flow-cytometry in two cohorts of infants with acute lymphoblastic leukemia treated according to either MLL-Baby or Interfant protocols. Leukemia 2020.

25. Flohr T., Schrauder A., Cazzaniga G., Panzer-Grumayer R., van der Velden V., Fischer S., et al. Minimal residual disease-directed risk stratification using real-time quantitative PCR analysis of immunoglobulin and T-cell receptor gene rearrangements in the international multicenter trial AIEOP-BFM ALL 2000 for childhood acute lymphoblastic leukemia. Leukemia 2008; 22 (4): 771–82.

26. Pui C. H., Pei D., Coustan-Smith E., Jeha S., Cheng C., Bowman W.P., et al. Clinical utility of sequential minimal residual disease measurements in the context of risk-based therapy in childhood acute lymphoblastic leukaemia: a prospective study. Lancet Oncol 2015; 16 (4): 465–74.

27. Vora A., Goulden N., Mitchell C., Hancock J., Hough R., Rowntree C., et al. Augmented post-remission therapy for a minimal residual disease-defined high-risk subgroup of children and young people with clinical standard-risk and intermediate-risk acute lymphoblastic leukaemia (UKALL 2003): a randomised controlled trial. Lancet Oncol 2014; 15 (8): 809–18.

28. Borowitz M. J., Wood B. L., Devidas M., Loh M. L., Raetz E. A., Salzer W. L., et al. Prognostic significance of minimal residual disease in high risk B-ALL: a report from Children's Oncology Group study AALL0232. Blood 2015; 126 (8): 964–71.

29. Coustan-Smith E., Sancho J., Behm F. G., Hancock M. L., Razzouk B. I., Ribeiro R. C., et al. Prognostic importance of measuring early clearance of leukemic cells by flow cytometry in childhood acute lymphoblastic leukemia. Blood 2002; 100 (1): 52–8.

30. Schrappe M., Bleckmann K., Zimmermann M., Biondi A., Moricke A., Locatelli F., et al. Reduced-Intensity Delayed Intensification in Standard-Risk Pediatric Acute Lymphoblastic Leukemia Defined by Undetectable Minimal Residual Disease: Results of an International Randomized Trial (AIEOP-BFM ALL 2000). J Clin Oncol 2018; 36 (3): 244–53.

31. Yeoh A. E., Ariffin H., Chai E. L., Kwok C. S., Chan Y. H., Ponnudurai K., et al. Minimal residual disease-guided treatment deintensification for children with acute lymphoblastic leukemia: results from the Malaysia-Singapore acute lymphoblastic leukemia 2003 study. J Clin Oncol 2012; 30 (19): 2384–92.

32. Vora A., Goulden N., Wade R., Mitchell C., Hancock J., Hough R., et al. Treatment reduction for children and young adults with low-risk acute lymphoblastic leukaemia defined by minimal residual disease (UKALL 2003): a randomised controlled trial. Lancet Oncol 2013; 14 (3): 199–209.

33. Pieters R., de Groot-Kruseman H., Van der Velden V., Fiocco M., van den Berg H., de Bont E., et al. Successful Therapy Reduction and Intensification for Childhood Acute Lymphoblastic Leukemia Based on Minimal Residual Disease Monitoring: Study ALL10 From the Dutch Childhood Oncology Group. J Clin Oncol 2016; 34 (22): 2591–601.

34. Pedrosa F., Coustan-Smith E., Zhou Y., Cheng C., Pedrosa A., Lins M. M., et al. Reduced-dose intensity therapy for pediatric lymphoblastic leukemia: long-term results of the Recife RELLA05 pilot study. Blood 2020; 135 (17): 1458–66.

35. Sidhom I., Shaaban K., Youssef S. H., Ali N., Gohar S., Rashed W. M., et al. Reduced-intensity therapy for pediatric lymphoblastic leukemia: impact of residual disease early in remission induction. Blood 2021; 137 (1): 20–8.

36. Karachunskiy A., Herold R., von Stackelberg A., Miakova N., Timakow A., Mahortih T., et al. Results of the first randomized multicentre trial on childhood acute lymphoblastic leukaemia in Russia. Leukemia 2008; 22 (6): 1144–53.

37. Karachunskiy A., Roumiantseva J., Lagoiko S., Buhrer C., Tallen G., Aleinikova O., et al. Efficacy and toxicity of dexamethasone vs methyl-prednisolone-long-term results in more than 1000 patients from the Russian randomized multicentric trial ALL-MB 2002. Leukemia 2015; 29 (9): 1955–8.

38. Karachunskiy A., Tallen G., Roumiantseva J., Lagoiko S., Chervova A., von Stackelberg A., et al. Reduced vs. standard dose native E. coli-as-paraginase therapy in childhood acute lymphoblastic leukemia: long-term results of the randomized trial Moscow–Berlin 2002. J Cancer Res Clin Oncol 2019; 145 (4): 1001–12.

39. Popov A., Verzhbitskaya T., Tsaur G., Solodovnikov A., Arakaev O., Streneva O., et al. Flow cytometric minimal residual disease monitoring in children with acute lymphoblastic leukemia treated by regimens with reduced intensity. Oncohematology 2015; 10 (4): 44–55.

40. Popov A., Belevtsev M., Boyakova E., Verzhbitskaya T., Movchan L., Fadeeva M., et al. Standardization of flow cytometric minimal residual disease monitoring in children with B-cell precursor acute lymphoblastic leukemia. Russia–Belarus multicenter group experience. Oncohematology 2016; 11 (4): 64–73.

41. Popov A., Henze G., Verzhbitskaya T., Roumiantseva J., Lagoyko S., Khlebnikova O., et al. Absolute count of leukemic blasts in cerebrospinal fluid as detected by flow cytometry is a relevant prognostic factor in children with acute lymphoblastic leukemia. J Cancer Res Clin Oncol 2019; 145 (5): 1331–9.

42. Dworzak M. N., Gaipa G., Ratei R., Veltroni M., Schumich A., Maglia O., et al. Standardization of flow cytometric minimal residual disease evaluation in acute lymphoblastic leukemia: Multicentric assessment is feasible. Cytometry B Clin Cytom 2008; 74 (6): 331–40.

43. Maurer-Granofszky M., Schumich A., Buldini B., Gaipa G., Kappelmayer J., Mejstrikova E., et al. An Extensive Quality Control and Quality Assurance (QC/QA) Program Significantly Improves Inter-Laboratory Concordance Rates of Flow-Cytometric Minimal Residual Disease Assessment in Acute Lymphoblastic Leukemia: An I-BFM-FLOW-Network Report. Cancers (Basel) 2021; 13 (23).

44. Kaplan E. L. M., Meier P. Nonparametric estimation from incomplete observations. Journal of the American Statistical Association 1958; 53 (282): 457–81.

45. Gray R. J. A Class of K-Sample Tests for Comparing the Cumulative Incidence of a Competing Risk. Ann Stat 1988; 16 (3): 1141–54.

46. Aur R. J., Pinkel D. Total therapy of acute lymphocytic leukemia. Prog Clin Cancer 1973; 5: 155–70.

47. Henze G., Langermann H. J., Lampert F., Neidhardt M., Riehm H. ALL therapy study 1971–1974 of the German working group for leukemia research and therapy in childhood: prognostic significance of initial features and different therapeutic modalities (author's transl). Klin Padiatr 1979; 191 (2): 114–26.

48. Novikova I., Verzhbitskaya T., Movchan L., Tsaur G., Belevtsev М., Popov A. Russian-Belarusian multicenter group standard guidelines for childhood acute lymphoblastic leukemia flow cytometric diagnostics. Oncohematology 2018; 13 (1): 73–82.

49. Arico M., Conter V., Valsecchi M. G., Rizzari C., Boccalatte M. F., Barisone E., et al. Treatment reduction in highly selected standard-risk child-hood acute lymphoblastic leukemia. The AIEOP ALL-9501 study. Haematologica 2005; 90 (9): 1186–91.

50. Gaipa G., Cazzaniga G., Valsecchi M. G., Panzer-Grumayer R., Buldini B., Silvestri D., et al. Time point-dependent concordance of flow cytometry and real-time quantitative polymerase chain reaction for minimal residual disease detection in childhood acute lymphoblastic leukemia. Haematologica 2012; 97 (10): 1582–93.

51. Denys B., van der Sluijs-Gelling A. J., Homburg C., van der Schoot C. E., de Haas V., Philippe J., et al. Improved flow cytometric detection of minimal residual disease in childhood acute lymphoblastic leukemia. Leukemia 2013; 27 (3): 635–41.

52. Theunissen P., Mejstrikova E., Sedek L., van der Sluijs-Gelling A. J., Gaipa G., Bartels M., et al. Standardized flow cytometry for highly sensitive MRD measurements in B-cell acute lymphoblastic leukemia. Blood 2017; 129 (3): 347–57.

53. Gupta S., Devidas M., Loh M. L., Raetz E. A., Chen S., Wang C., et al. Flow-cytometric vs. -morphologic assessment of remission in child-hood acute lymphoblastic leukemia: a report from the Children's Oncology Group (COG). Leukemia 2018; 32 (6): 1370–9.

54. Buchmann S., Schrappe M., Baruchel A., Biondi A., Borowitz M. J., Campbell M., et al. Remission, treatment failure, and relapse in pediatric ALL: An international consensus of the Ponte-di-Legno Consortium. Blood 2021.

55. Dworzak M. N., Froschl G., Printz D., Mann G., Potschger U., Muhlegger N., et al. Prognostic significance and modalities of flow cytometric minimal residual disease detection in childhood acute lymphoblastic leukemia. Blood 2002; 99 (6): 1952–8.

56. Popov A. M., Verzhbitskaia T., Tsaur G. A., Shorikov E. V., Tsvirenko S. V., Savel'ev L. I., et al. The limited possibility of using a simplified approach to detect minimal residual disease by the flow cytometry technique in children with precursor B-lineage acute lymphoblastic leukemia. Klin Lab Diagn 2011; (3): 25–9.

57. Mikhailova E., Verzhbitskaya T., Roumiantseva J., Illarionova O., Semchenkova A., Fechina L., et al. The influence of a dosage regimen of dexamethasone on detection of normal B-cell precursors in the bone marrow of children with BCP-ALL at the end of induction therapy. Pediatric Hematology/Oncology and Immunopathology 2020; 19 (1): 53–7.

58. Coustan-Smith E., Ribeiro R. C., Stow P., Zhou Y., Pui C. H., Rivera G. K., et al. A simplified flow cytometric assay identifies children with acute lymphoblastic leukemia who have a superior clinical outcome. Blood 2006; 108 (1): 97–102.

59. Queudeville M., Ebinger M. Blinatumomab in Pediatric Acute Lymphoblastic Leukemia-From Salvage to First Line Therapy (A Systematic Review). J Clin Med 2021; 10 (12).


Рецензия

Для цитирования:


Popov A., Henze G., Roumiantseva Y., Budanov O., Belevtsev M., Verzhbitskaya T., Boyakova E., Movchan L., Tsaur G., Fadeeva M., Lagoyko S., Zharikova L., Myakova N., Litvinov D., Khlebnikova O., Streneva O., Stolyarova E., Ponomareva N., Novichkova G., Fechina L., Aleinikova O., Karachunskiy A. Low-intensity therapy cures over 40 % of children with rapid Flow-MRD responding ALL: the ALL-MB 2008 trial results. Вопросы гематологии/онкологии и иммунопатологии в педиатрии. 2022;21(2):95-104. https://doi.org/10.24287/1726-1708-2022-21-2-95-104

For citation:


Popov A., Henze G., Roumiantseva Yu., Budanov O., Belevtsev M., Verzhbitskaya T., Boyakova E., Movchan L., Tsaur G., Fadeeva M., Lagoyko S., Zharikova L., Myakova N., Litvinov D., Khlebnikova O., Streneva O., Stolyarova E., Ponomareva N., Novichkova G., Fechina L., Aleinikova O., Karachunskiy A. Low-intensity therapy cures over 40 % of children with rapid Flow-MRD responding ALL: the ALL-MB 2008 trial results. Pediatric Hematology/Oncology and Immunopathology. 2022;21(2):95-104. https://doi.org/10.24287/1726-1708-2022-21-2-95-104

Просмотров: 129


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1726-1708 (Print)
ISSN 2414-9314 (Online)