Роль ганглиозидов в модуляции канцерогенеза
https://doi.org/10.24287/1726-1708-2022-21-2-157-166
Аннотация
Ганглиозиды – сложные соединения, относящиеся к классу гликосфинголипидов, несущие в своем составе церамид и различные олигосахариды, в которых обычно присутствуют сиаловые кислоты. Интересной особенностью ганглиозидов является изменение их количественного и качественного состава в процессе онкогенеза, что характеризуется определенной специфичностью в зависимости от гистологического типа опухоли и функционального статуса в пределах даже одного новообразования. С другой стороны, современные достижения в понимании структурной и функциональной организации гликосфинголипидов, в первую очередь в контексте формирования липидных рафтов, продемонстрировали возможность участия ганглиозидов в регуляции активности киназ, опосредующих модуляцию сигнальных путей, детерминирующих формирование злокачественного потенциала клеток. В статье рассмотрены фундаментальные представления о биологической роли ганглиозидов в проведении сигнальных путей, вовлеченных в регуляцию опухолевого процесса, с акцентом на экспериментальные исследования, демонстрирующие как ингибирующее, так и активирующее влияние на важные белковые рецепторы, ответственные за пролиферацию, дифференцировку и гибель клеток.
Об авторах
Н. С. ИвановРоссия
Иванов Николай Сергеевич, врач-педиатр, врач-ординатор по специальности «детская онкология»
117997, Москва, ул. Саморы Машела, 1
Р. В. Холоденко
Россия
Москва
Д. Ю. Качанов
Россия
Москва
С. С. Ларин
Россия
Москва
М. Д. Моллаев
Россия
Москва
Т. В. Шаманская
Россия
Москва
Список литературы
1. Schnaar R. L. The Biology of Gangliosides. Adv Carbohydr Chem Biochem 2019; 76: 113–48. DOI: 10.1016/bs.accb.2018.09.002
2. Kolter T., Sandhoff K. Sphingolipids-Their Metabolic Pathways and the Pathobiochemistry of Neurodegenerative Diseases. Angew Chem Int Ed Engl 1999; 38 (11): 1532–68. DOI: 10.1002/(SICI)1521-3773(19990601)38:11<1532::AID-ANIE1532>3.0.CO;2-U
3. Sandhoff R., Sandhoff K. Emerging concepts of ganglioside metabolism. FEBS Lett 2018; 592 (23): 3835–64. DOI: 10.1002/1873-3468.13114
4. Lopez P. H., Schnaar R. L. Gangliosides in cell recognition and membrane protein regulation. Curr Opin Struct Biol 2009; 19 (5): 549–57. DOI: 10.1016/j.sbi.2009.06.001
5. Hakomori S. Traveling for the glycosphingolipid path. Glycoconj J 2000; 17 (7–9): 627–47. DOI: 10.1023/a:1011086929064
6. Sasaki N., Toyoda M., Ishiwata T. Gangliosides as Signaling Regulators in Cancer. Int J Mol Sci 2021; 22 (10): 5076. DOI: 10.3390/ijms22105076
7. Mitsuda T., Furukawa K., Fukumoto S., Miyazaki H., Urano T., Furukawa K. Overexpression of ganglioside GM1 results in the dispersion of platelet-derived growth factor receptor from glycolip idenriched microdomains and in the suppression of cell growth signals. J Biol Chem 2002; 277 (13): 11239–46. DOI: 10.1074/jbc.M107756200
8. Nishio M., Fukumoto S., Furukawa K., Ichimura A., Miyazaki H., Kusunoki S., еt al. Overexpressed GM1 suppresses nerve growth factor (NGF) signals by modulating the intracellular localization of NGF receptors and membrane fluidity in PC12 cells. J Biol Chem 2004; 279 (32): 33368–78. DOI: 10.1074/jbc.M403816200
9. Chiricozzi E., Pomè D.Y., Maggioni M., Di Biase E., Parravicini C., Palazzolo L., еt al. Role of the GM1 ganglioside oligosaccharide portion in the TrkA-dependent neurite sprouting in neuroblastoma cells. J Neurochem 2017; 143 (6): 645–59. DOI: 10.1111/jnc.14146
10. Chiricozzi E., Biase E. D., Maggioni M., Lunghi G., Fazzari M., Pomè D. Y., еt al. GM1 promotes TrkA-mediated neuroblastoma cell differentiation by occupying a plasma membrane domain different from TrkA. J Neurochem 2019; 149 (2): 231–41. DOI: 10.1111/jnc.14685
11. Mallei A., Rabin S. J., Mocchetti I. Autocrine regulation of nerve growth factor expression by Trk receptors. J Neurochem 2004; 90 (5): 1085–93. DOI: 10.1111/j.1471-4159.2004.02568.x
12. Zhuo D., Guan F. Ganglioside GM1 promotes contact inhibition of growth by regulating the localization of epidermal growth factor receptor from glycosphingolipid-enriched microdomain to caveolae. Cell Prolif 2019; 52 (4): e12639. DOI: 10.1111/cpr.12639
13. Nishio M., Tajima O., Furukawa K., Urano T., Furukawa K. Over-expression of GM1 enhances cell proliferation with epidermal growth factor without affecting the receptor localization in the microdomain in PC12 cells. Int J Oncol 2005; 26 (1): 191–9.
14. Todeschini A. R., Dos Santos J. N., Handa K., Hakomori S. I. Ganglioside GM2-tetraspanin CD82 complex inhibits met and its cross-talk with integrins, providing a basis for control of cell motility through glycosynapse. J Biol Chem 2007; 282 (11): 8123–33. DOI: 10.1074/jbc.M611407200
15. Todeschini A. R., Dos Santos J. N., Handa K., Hakomori S. I. Ganglioside GM2/GM3 complex affixed on silica nanospheres strongly inhibits cell motility through CD82/cMet-mediated pathway. Proc Natl Acad Sci U S A 2008; 105 (6): 1925–30. DOI: 10.1073/pnas.0709619104
16. Chung T. W., Kim S. J., Choi H. J., Kim K. J., Kim M. J., Kim S. H., еt al. Ganglioside GM3 inhibits VEGF/VEGFR-2-mediated angiogenesis: direct interaction of GM3 with VEGFR-2. Glycobiology 2009; 19 (3): 229–39. DOI: 10.1093/glycob/cwn114
17. Seyfried T. N., Mukherjee P. Ganglioside GM3 Is Antiangiogenic in Malignant Brain Cancer. J Oncol 2010; 2010: 961243. URL: https://pubmed.ncbi.nlm.nih.gov/20634908/
18. Meuillet E., Cremel G., Dreyfus H., Hicks D. Differential modulation of basic fibroblast and epidermal growth factor receptor activation by ganglioside GM3 in cultured retinal Müller glia. Glia 1996; 17 (3): 206–16. DOI: 10.1002/(SICI)1098-1136(199607)17:3<206::AID-GLIA3>3.0.CO;2-Z
19. Toledo M. S., Suzuki E., Handa K., Hakomori S. Cell growth regulation through GM3-enriched microdomain (glycosynapse) in human lung embryonal fibroblast WI38 and its oncogenic transformant VA13. J Biol Chem 2004; 279 (33): 34655–64. DOI: 10.1074/jbc.M403857200
20. Prinetti A., Aureli M., Illuzzi G., Prioni S., Nocco V., Scandroglio F., еt al. GM3 synthase overexpression results in reduced cell motility and in caveolin-1 upregulation in human ovarian carcinoma cells. Glycobiology 2010; 20 (1): 62–77. DOI: 10.1093/glycob/cwp143
21. Prinetti A., Cao T., Illuzzi G., Prioni S., Aureli M., Gagliano N., еt al. A glycosphingolipid/caveolin-1 signaling complex inhibits motility of human ovarian carcinoma cells. J Biol Chem 2011; 286 (47): 40900–10. DOI: 10.1074/jbc.M111.286146
22. Mitsuzuka K., Handa K., Satoh M., Arai Y., Hakomori S. A specific microdomain ("glycosynapse 3") controls phenotypic conversion and reversion of bladder cancer cells through GM3-mediated interaction of alpha3beta1 integrin with CD9. J Biol Chem 2005; 280 (42): 35545–53. DOI: 10.1074/jbc.M505630200
23. Hakomori S. I., Handa K. GM3 and cancer. Glycoconj J 2015; 32 (1–2): 1–8. DOI: 10.1007/s10719-014-9572-4
24. Shibuya H., Hamamura K., Hotta H., Matsumoto Y., Nishida Y., Hattori H., еt al. Enhancement of malignant properties of human osteosarcoma cells with disialyl gangliosides GD2/GD3. Cancer Sci 2012; 103 (9): 1656–64. DOI: 10.1111/j.1349-7006.2012.02344.x
25. Cazet A., Groux-Degroote S., Teylaert B., Kwon K. M., Lehoux S., Slomianny C., еt al. GD3 synthase overexpression enhances proliferation and migration of MDA-MB-231 breast cancer cells. Biol Chem 2009; 390 (7): 601–9. DOI: 10.1515/BC.2009.054
26. Cazet A., Lefebvre J., Adriaenssens E., Julien S., Bobowski M., Grigoriadis A., еt al. GD₃ synthase expression enhances proliferation and tumor growth of MDA-MB-231 breast cancer cells through c-Met activation. Mol Cancer Res 2010; 8 (11): 1526–35. DOI: 10.1158/1541-7786.MCR-10-0302
27. Cazet A., Bobowski M., Rombouts Y., Lefebvre J., Steenackers A., Popa I., еt al. The ganglioside G(D2) induces the constitutive activation of c-Met in MDA-MB-231 breast cancer cells expressing the G(D3) synthase. Glycobiology 2012; 22 (6): 806–16. DOI: 10.1093/glycob/cws049
28. Yoshida S., Fukumoto S., Kawaguchi H., Sato S., Ueda R., Furukawa K. Ganglioside G(D2) in small cell lung cancer cell lines: enhancement of cell proliferation and mediation of apoptosis. Cancer Res 2001; 61 (10): 4244–52.
29. Вишнякова П. А. Активность каспаз в клеточной гибели, индуцированной GD2-специфичными антителами / П. А. Вишнякова [и др.] // Биоорганическая химия. – 2014. – 40 (3): 305–14.
30. Доронин И. И. Участие актиновых филаментов в реализации цитотоксического действия GD2-специфичных антител / И. И. Доронин [и др.] // Клеточные технологии в биологии и медицине. – 2018. – 4: 220–31.
31. Battula V. L., Shi Y., Evans K. W., Wang R. Y., Spaeth E. L., Jacamo R. O., еt al. Ganglioside GD2 identifies breast cancer stem cells and promotes tumorigenesis. J Clin Invest 2012; 122 (6): 2066–78. DOI: 10.1172/JCI59735
32. Sarkar T. R., Battula V. L., Werden S. J., Vijay G. V., Ramirez-Peña E. Q., Taube J. H., еt al. GD3 synthase regulates epithelial-mesenchymal transition and metastasis in breast cancer. Oncogene 2015; 34 (23): 2958–67. DOI: 10.1038/onc.2014.245
33. Иванов Н. С. Роль GD2 как диагностического и прогностического опухолевого маркера при нейробластоме (обзор литературы) / Н. С. Иванов [и др.] // Российский журнал детской гематологии и онкологии. – 2021; 8 (4): 47–59. DOI: 10.21682/2311-1267-2021-8-4-47-59
34. Liu Y., Li R., Ladisch S. Exogenous ganglioside GD1a enhances epidermal growth factor receptor binding and dimerization. J Biol Chem 2004; 279 (35): 36481–9. DOI: 10.1074/jbc.M402880200
35. Yang H. J., Jung K. Y., Kwak D. H., Lee S. H., Ryu J. S., Kim J. S., еt al. Inhibition of ganglioside GD1a synthesis suppresses the differentiation of human mesenchymal stem cells into osteoblasts. Dev Growth Differ 2011; 53 (3): 323–32. DOI: 10.1111/j.1440-169X.2010.01240.x
36. Fukumoto S., Mutoh T., Hasegawa T., Miyazaki H., Okada M., Goto G., еt al. GD3 synthase gene expression in PC12 cells results in the continuous activation of TrkA and ERK1/2 and enhanced proliferation. J Biol Chem 2000; 275 (8): 5832–8. DOI: 10.1074/jbc.275.8.5832
37. Mirkin B. L., Clark S. H., Zhang C. Inhibition of human neuroblastoma cell proliferation and EGF receptor phosphorylation by gangliosides GM1, GM3, GD1A and GT1B. Cell Prolif 2002; 35 (2): 105–15. DOI: 10.1046/j.1365-2184.2002.00228.x
38. Kume M., Kiyohara E., Matsumura Y., Koguchi-Yoshioka H., Tanemura A., Hanaoka Y., еt al. Ganglioside GD3 May Suppress the Functional Activities of Benign Skin T Cells in Cutaneous T-Cell Lymphoma. Front Immunol 2021; 12: 651048. DOI: 10.3389/fimmu.2021.651048
39. Zeng G., Gao L., Birklé S., Yu R. K. Suppression of ganglioside GD3 expression in a rat F-11 tumor cell line reduces tumor growth, angiogenesis, and vascular endothelial growth factor production. Cancer Res 2000; 60 (23): 6670–6.
40. Ohkawa Y., Momota H., Kato A., Hashimoto N., Tsuda Y., Kotani N., еt al. Ganglioside GD3 Enhances Invasiveness of Gliomas by Forming a Complex with Platelet-de-rived Growth Factor Receptor α and Yes Kinase. J Biol Chem 2015; 290 (26): 16043–58. DOI: 10.1074/jbc.M114.635755
41. Wang J., Yu R. K. Interaction of ganglioside GD3 with an EGF receptor sustains the self-renewal ability of mouse neural stem cells in vitro. Proc Natl Acad Sci U S A 2013; 110 (47): 19137–42. DOI: 10.1073/pnas.1307224110
42. Furukawa K., Ohkawa Y., Yamauchi Y., Hamamura K., Ohmi Y., Furukawa K. Fine tuning of cell signals by glycosylation. J Biochem 2012; 151 (6): 573–8. DOI: 10.1093/jb/mvs043
43. Hamamura K., Furukawa K., Hayashi T., Hattori T., Nakano J., Nakashima H., еt al. Ganglioside GD3 promotes cell growth and invasion through p130Cas and paxillin in malignant melanoma cells. Proc Natl Acad Sci U S A 2005; 102 (31): 11041–6. DOI: 10.1073/pnas.0503658102
44. Ohkawa Y., Miyazaki S., Hamamura K., Kambe M., Miyata M., Tajima O., еt al. Ganglioside GD3 enhances adhesion signals and augments malignant properties of melanoma cells by recruiting integrins to glycolipid-enriched microdomains. J Biol Chem 2010; 285 (35): 27213–23. DOI: 10.1074/jbc.M109.087791
45. Ohkawa Y., Miyazaki S., Miyata M., Hamamura K., Furukawa K., Furukawa K. Essential roles of integrin-mediated signaling for the enhancement of malignant properties of melanomas based on the expression of GD3. Biochem Biophys Res Commun 2008; 373 (1): 14–9. DOI: 10.1016/j.bbrc.2008.05.149
46. Hamamura K., Tsuji M., Hotta H., Ohkawa Y., Takahashi M., Shibuya H., еt al. Functional activation of Src family kinase yes protein is essential for the enhanced malignant properties of human melanoma cells expressing ganglioside GD3. J Biol Chem 2011; 286 (21): 18526–37. DOI: 10.1074/jbc.M110.164798
47. Shibuya H., Hamamura K., Hotta H., Matsumoto Y., Nishida Y., Hattori H., еt al. Enhancement of malignant properties of human osteosarcoma cells with disialyl gangliosides GD2/GD3. Cancer Sci 2012; 103 (9): 1656–64. DOI: 10.1111/j.1349-7006.2012.02344.x
48. Dong L., Liu Y., Colberg-Poley A. M., Kaucic K., Ladisch S. Induction of GM1a/GD1b synthase triggers complex ganglioside expression and alters neuroblastoma cell behavior; a new tumor cell model of ganglioside function. Glycoconj J 2011; 28 (3–4): 137–47. DOI: 10.1007/s10719-011-9330-9
49. Hettmer S., Malott C., Woods W., Ladisch S., Kaucic K. Biological stratification of human neuroblastoma by complex "B" pathway ganglioside expression. Cancer Res 2003; 63 (21): 7270–6.
50. Wu Z. L., Schwartz E., Seeger R., Ladisch S. Expression of GD2 ganglioside by untreated primary human neuroblastomas. Cancer Res 1986; 46 (1): 440–3.
51. Cheung N. K., Lazarus H., Miraldi F. D., Abramowsky C. R., Kallick S., Saarinen U.M., еt al. Ganglioside GD2 specific monoclonal antibody 3F8: a phase I study in patients with neuroblastoma and malignant melanoma. J Clin Oncol 1987; 5 (9): 1430–40. DOI: 10.1200/JCO.1987.5.9.1430
52. Yu A. L., Gilman A. L., Ozkaynak M. F., London W. B., Kreissman S. G., Chen H. X., еt al. Anti-GD2 antibody with GM-CSF, interleukin-2, and isotretinoin for neuroblastoma. N Engl J Med 2010; 363 (14): 1324–34. DOI: 10.1056/NEJMoa0911123
53. Ladenstein R., Pötschger U., Valteau-Couanet D., Luksch R., Castel V., Ash S., еt al. Investigation of the Role of Dinutuximab Beta-Based Immunotherapy in the SIOPEN High-Risk Neuroblastoma 1 Trial (HR-NBL1). Cancers (Basel) 2020; 12 (2): 309. DOI: 10.3390/cancers12020309
54. Cheung N. K., Cheung I. Y., Kushner B. H., Ostrovnaya I., Chamberlain E., Kramer K., еt al. Murine anti-GD2 monoclonal antibody 3F8 combined with granulocyte-macrophage colony-stimulating factor and 13-cis-retinoic acid in high-risk patients with stage 4 neuroblastoma in first remission. J Clin Oncol 2012; 30 (26): 3264–70. DOI: 10.1200/JCO.2011.41.3807
55. Kholodenko I. V., Kalinovsky D. V., Doronin I. I., Deyev S. M., Kholodenko R. V. Neuroblastoma Origin and Therapeutic Targets for Immunotherapy. J Immunol Res 2018; 2018: 7394268. DOI: 10.1155/2018/7394268
56. Sait S., Modak S. Anti-GD2 immunotherapy for neuroblastoma. Expert Rev Anticancer Ther 2017; 17 (10): 889–904. DOI: 10.1080/14737140.2017.1364995
57. Terzic T., Cordeau M., Herblot S., Teira P., Cournoyer S., Beaunoyer M., еt al. Expression of Disialoganglioside (GD2) in Neuroblastic Tumors: A Prognostic Value for Patients Treated With Anti-GD2 Immunotherapy. Pediatr Dev Pathol 2018; 21 (4): 355–62. DOI: 10.1177/1093526617723972
58. Brodeur G. M. Spontaneous regression of neuroblastoma. Cell Tissue Res 2018; 372 (2): 277–86. DOI: 10.1007/s00441-017-2761-2
Рецензия
Для цитирования:
Иванов Н.С., Холоденко Р.В., Качанов Д.Ю., Ларин С.С., Моллаев М.Д., Шаманская Т.В. Роль ганглиозидов в модуляции канцерогенеза. Вопросы гематологии/онкологии и иммунопатологии в педиатрии. 2022;21(2):157-166. https://doi.org/10.24287/1726-1708-2022-21-2-157-166
For citation:
Ivanov N.S., Kholodenko R.V., Kachanov D.Yu., Larin S.S., Mollaev M.D., Shamanskaya T.V. The role of gangliosides in the modulation of carcinogenesis. Pediatric Hematology/Oncology and Immunopathology. 2022;21(2):157-166. (In Russ.) https://doi.org/10.24287/1726-1708-2022-21-2-157-166