Preview

Вопросы гематологии/онкологии и иммунопатологии в педиатрии

Расширенный поиск

Вклад электронной микроскопии в исследование нарушений морфологии тромбоцитов

https://doi.org/10.24287/1726-1708-2022-21-3-142-146

Полный текст:

Аннотация

В данной статье рассматривается роль электронной микроскопии в диагностике и изучении морфологических изменений при врожденных заболеваниях, вызывающих нарушения строения тромбоцитов. Морфологические нарушения могут быть разделены на патологии цитоскелета тромбоцитов, альфа- и плотных гранул, а также изменения мембраны. В обзоре описываются ультраструктурные дефекты тромбоцитов при синдроме Вискотта–Олдрича, MYH9-ассоциированных синдромах, синдроме серых тромбоцитов, синдроме Германского–Пудлака, синдроме Пари–Труссо и синдроме Чедиака–Хигаши.

Об авторах

С. И. Обыденный
ФГБУ «Национальный медицинский исследовательский центр детской гематологии, онкологии и иммунологии им. Дмитрия Рогачева» Минздрава России; ФГБУН «Центр теоретических проблем физико-химической фармакологии» РАН
Россия

Обыденный Сергей Иванович, научный сотрудник лаборатории клеточного гемостаза и тромбоза

117997, Москва, ул. Саморы Машела, 1



И. И. Киреев
ФГБОУ ВО «Московский государственный университет им. М.В. Ломоносова»
Россия

Москва



М. А. Пантелеев
ФГБУ «Национальный медицинский исследовательский центр детской гематологии, онкологии и иммунологии им. Дмитрия Рогачева» Минздрава России; ФГБУН «Центр теоретических проблем физико-химической фармакологии» РАН; ФГБОУ ВО «Московский государственный университет им. М.В. Ломоносова»
Россия

Москва



Список литературы

1. Youssefian T., Cramer E.M. Megakaryocyte dense granule components are sorted in multivesicular bodies. Blood 2000; 95 (12): 4004–7.

2. Johnston G.I., Cook R.G., McEver R.P. Cloning of GMP- 140, a granule membrane protein of platelets and endothelium: sequence similarity to proteins involved in cell adhesion and inflammation. Cell 1989; 56 (6): 1033–44.

3. Larsen E., Celi А., Gilbert G.E., Furie B.C., Erban J.K., Bonfanti R., et al., PADGEM protein: a receptor that mediates the interaction of activated platelets with neutrophils and monocytes. Cell 1989; 59 (2): 305–12.

4. Chen D., Uhl C.B., Bryant S.C., Krumwiede M., Barness R.L., Olson M.C., et al., Diagnostic laboratory standardization and validation of platelet transmission electron microscopy. Platelets 2018; 29 (6): 574–82.

5. Reynolds E.S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 1963; 17 (1): 208.

6. Raccuglia G. Gray platelet syndrome: a variety of qualitative platelet disorder. Am J Med 1971; 51 (6): 818–28.

7. Nurden A.T., Nurden P. The gray platelet syndrome: clinical spectrum of the disease. Blood Rev 2007; 21 (1): 21–36.

8. Rosa J., George J.N., Bainton D.F., Nurden A.T., Caen J.P., McEver R.P. Gray platelet syndrome. Demonstration of alpha granule membranes that can fuse with the cell surface. J Clin Invest 1987; 80 (4): 1138–46.

9. Gerrard J.M., Phillips D.R., Rao G.H., Plow E.F., Walz D.A., Ross R., et al. Biochemical studies of two patients with the gray platelet syndrome. Selective deficiency of platelet alpha granules. J Clin Invest.1980; 66 (1): 102–9.

10. Nurden, A.T., Kunicki T.J., Dupuis D., Soria C., Caen J.P. Specific protein and glycoprotein deficiencies in platelets isolated from two patients with the gray platelet syndrome. Blood 1982; 59 (4): 709–18.

11. Srivastava P., Powling M.J., Nokes T.J., Patrick A.D., Dawes J., Hardisty R.M. Grey platelet syndrome: studies on platelet alpha‐granules, lysosomes and defective response to thrombin. Br J Haematol 1987; 65 (4): 441–6.

12. Levy-Toledano S., Caen J.P., Breton-Gorius J., Rendu F., Cywiner-Golenzer C., Dupuy E., et al. Gray platelet syndrome: a-granule deficiency: its influence on platelet function. J Lab Clin Med 1981; 98 (6): 831–48.

13. Favier R., Douay L., Esteva B., Portnoi M.F., Gaulard P., Lecompte T., et al. A novel genetic thrombocytopenia (Paris-Trousseau) associated with platelet inclusions, dysmegakaryopoiesis and chromosome deletion AT 11q23. C R Acad Sci III 1993; 316 (7): 698–701.

14. Grossfeld P.D., Mattina Т., Lai Z., Favier R., Jones K.L., Cotter F., et al. The 11q terminal deletion disorder: a prospective study of 110 cases. Am J Med Genet A 2004; 129 (1): 51–61.

15. Breton-Gorius J., Favier R., Guichard J., Cherif D., Berger R., Debili N., et al. A new congenital dysmegakaryopoietic thrombocytopenia (Paris-Trousseau) associated with giant platelet alpha-granules and chromosome 11 deletion at 11q23. Blood 1995; 85 (7): 1805–14.

16. Di Pietro S.M., Falcón-Pérez J.M., Tenza D., Setty S.R.G., Marks M.S., Raposo G., et al. BLOC-1 interacts with BLOC-2 and the AP-3 complex to facilitate protein trafficking on endosomes. Mol Biol Cell 2006; 17 (9): 4027–38.

17. White J. Platelet microtubules and giant granules in the Chediak-Higashi syndrome. Am J Med Technol 1978; 44 (4): 273–8.

18. Apitz‐Castro R., Cruz M.R., Ledezma E., Merino F., Ramirez-Duque P., Dangelmeier C., et al. The storage pool deficiency in platelets from humans with the Chédiak‐Higashi syndrome: study of six patients. Br J Haematol 1985; 59 (3): 471–3.

19. Rendu F., Breton-Gorius J., Lebret M., Klebanoff С., Buriot D., Griscelli C., et al. Evidence that abnormal platelet functions in human Chédiak-Higashi syndrome are the result of a lack of dense bodies. Am J Pathol 1983; 111 (3): 307.

20. White J.G., The Chediak-Higashi syndrome: a possible lysosomal disease. Blood 1966; 28 (2): 143–56.

21. López J.A., Andrews R.K., AfsharKharghan V., Berndt M.C. Bernard-soulier syndrome. Blood 1998; 91 (12): 4397–418.

22. Smith T.P., Dodds W.J., Tartaglia A.P. Thrombasthenic-thrombopathic thrombocytopenia with giant, "Swiss-cheese" platelets: a case report. Ann Intern Med 1973; 79 (6): 828–34.

23. Seri M., Pecci А., Di Bari F., Cusano R., Savino М., Panza Е., et al. MYH9-related disease: May-Hegglin anomaly, Sebastian syndrome, Fechtner syndrome, and Epstein syndrome are not distinct entities but represent a variable expression of a single illness. Medicine (Baltimore) 2003; 82 (3): 203–15.

24. Symons M., Derry J.M., Karlak B., Jiang S., Lemahieu V., Mccormick F., et al. Wiskott– Aldrich syndrome protein, a novel effector for the GTPase CDC42Hs, is implicated in actin polymerization. Cell 1996; 84 (5): 723–34.

25. Obydennyi S.I., Artemenko E.O., Sveshnikova A.N., Ignatova A.A., Varlamova T.V., Gambaryan S., et al., Mechanisms of increased mitochondria-dependent necrosis in Wiskott-Aldrich syndrome platelets. Haematologica 2020; 105 (4): 1095–106.


Рецензия

Для цитирования:


Обыденный С.И., Киреев И.И., Пантелеев М.А. Вклад электронной микроскопии в исследование нарушений морфологии тромбоцитов. Вопросы гематологии/онкологии и иммунопатологии в педиатрии. 2022;21(3):142-146. https://doi.org/10.24287/1726-1708-2022-21-3-142-146

For citation:


Obydennyi S.I., Kireev I.I., Panteleev M.A. The electron microscopy contribution to platelet structural pathology investigation. Pediatric Hematology/Oncology and Immunopathology. 2022;21(3):142-146. (In Russ.) https://doi.org/10.24287/1726-1708-2022-21-3-142-146

Просмотров: 285


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1726-1708 (Print)
ISSN 2414-9314 (Online)