Preview

Вопросы гематологии/онкологии и иммунопатологии в педиатрии

Расширенный поиск

Возможности иммунотерапии в лечении COVID-19

https://doi.org/10.24287/1726-1708-2021-20-3-158-168

Полный текст:

Аннотация

Достаточно высокую смертность при COVID-19 можно объяснить развитием гипервоспалительного синдрома, характеризующегося цитокиновым штормом и обширным тромбообразованием. Основным направлением по предотвращению развития гипервоспалительного синдрома и по снижению летальности от COVID-19 является иммунная терапия, однако данные об эффективности и критериях назначения иммунных препаратов весьма разнородны. Целью данного обзора является анализ результатов клинических исследований по применению различных видов иммунной терапии при COVID-19 и возможных критериев ее назначения. Анализ литературных данных показал, что из существующих вариантов иммунной терапии наиболее эффективными оказались моноклональные антитела к IL-6, а также использование плазмы доноров на ранних этапах лечения. Ингибиторы янус-киназы, внутривенный иммуноглобулин способствовали улучшению клинического состояния пациентов, однако не влияли на уровень смертности. Авторами статьи был проведен анализ возможных маркеров предикторов развития цитокиновгого шторма. Наибольшую информативность и доступность в клинической практике на данный момент показали повышение количества нейтрофилов > 11 × 103/мл, снижение количества лимфоцитов > 1000 × 103/мл, повышение уровня IL-6 > 24 пг/мл, лактатдегидрогеназы > 300 МЕ/л, Д-димера > 1000 нг/мл и С-реактивного белка > 10 мг/дл.

Об авторах

А. М. Малкова
ФГБОУ ВО «Санкт-Петербургский государственный университет»
Россия

Санкт-Петербург



А. А. Старшинова
ФГБУ «Национальный медицинский исследовательский центр им. В.А. Алмазова» Минздрава России
Россия

Старшинова Анна Андреевна, д-р мед. наук, начальник Управления научными исследованиями

197341, Cанкт-Петербург, ул. Аккуратова, 2



И. В. Кудрявцев
ФГБНУ «Институт экспериментальной медицины»; ФГАОУ ВО «Дальневосточный федеральный университет»
Россия

Санкт-Петербург

Владивосток



И. Ф. Довгалюк
ФГБУ «Санкт-Петербургский научно-исследовательский институт фтизиопульмонологии» Минздрава России
Россия

Санкт-Петербург



Ю. С. Зинченко
ФГБУ «Санкт-Петербургский научно-исследовательский институт фтизиопульмонологии» Минздрава России
Россия

Санкт-Петербург



Д. А. Кудлай
ФГАОУ ВО «Первый Московский государственный медицинский университет им. И.М. Сеченова» Минздрава России (Сеченовский Университет); ФГБУ «Государственный научный центр «Институт иммунологии» ФМБА России
Россия

Москва



Список литературы

1. Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y., et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395 (10223): 497–506. DOI: 10.1016/S0140-6736(20)30183-5

2. Zhu N., Zhang D., Wang W., Li X., Yang B., Song J., et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med 2020; 382 (8): 727–33. DOI: 10.1056/NEJMoa2001017

3. Wang Q., Zhang Y., Wu L., Niu S., Song C., Zhang Z., et al. Structural and Functional Basis of SARSCoV-2 Entry by Using Human ACE2. Cell 2020; 181 (4): 894–904.e9. DOI: 10.1016/j.cell.2020.03.045

4. Beigel J.H., Voell J., Kumar P., Raviprakash K., Wu H., Jiao J.A., et al. Safety and tolerability of a novel, polyclonal human anti-MERS coronavirus antibody produced from transchromosomic cattle: a phase 1 randomised, double-blind, single-dose-escalation study. Lancet Infect Dis 2018; 18 (4): 410–8. DOI: 10.1016/S1473-3099(18)30002-1

5. Ko J.H., Seok H., Cho S.Y., Ha Y.E., Baek J.Y., Kim S.H., et al. Challenges of convalescent plasma infusion therapy in Middle East respiratory coronavirus infection: A single centre experience. Antivir Ther 2018; 23 (7): 617–22. DOI: 10.3851/IMP3243

6. Cheng Y., Wong R., Soo Y.O.Y., Wong W.S., Lee C.K., Ng M.H.L., et al. Use of convalescent plasma therapy in SARS patients in Hong Kong. Eur J Clin Microbiol Infect Dis 2005; 24 (1): 44–6. DOI: 10.1007/s10096-004-1271-9

7. Козлов В.А., Савченко А.А., Кудрявцев И.В., Козлов И.Г., Кудлай Д.А., Продеус А.П. и др. Клиническая иммунология. Красноярск: Поликор; 2020. 386 с.

8. Чугунов А.А., Салухов В.В., Данцева О.В., Харитонов М.А., Рудаков Ю.В., Болехан А.В. и др. Некоторые аспекты применения глюкокортикоидных препаратов в комплексном лечении новой коронавирусной инфекции. Медицинский Альянс 2021; 9 (1): 43–51.

9. Zhou F., Yu T., Du R., Fan G., Liu Y., Liu Z., et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 2020; 395 (10229): 1054–62. DOI: 10.1016/S0140-6736(20)30566-3

10. Tan C.W., Low J.G.H., Wong W.H., Chua Y.Y., Goh S.L., Ng H.J. Critically ill COVID-19 infected patients exhibit increased clot waveform analysis parameters consistent with hypercoagulability. Am J Hematol 2020; 95 (7): E156–8. DOI: 10.1002/ajh.25822

11. Lei J., Li J., Li X., Qi X. CT imaging of the 2019 novel coronavirus (2019-NCoV) pneumonia. Radiology 2020; 295 (1): 18. DOI: 10.1148/radiol.2020200236

12. Malkova A., Kudlay D., Kudryavtsev I., Starshinova A., Yablonskiy P., Shoenfeld Y. Immunogenetic predictors of severe covid-19 Vaccines (Basel) 2021; 9 (3): 211. DOI: 10.3390/vaccines9030211

13. Fink S.L., Cookson B.T. Apoptosis, pyroptosis, and necrosis: Mechanistic description of dead and dying eukaryotic cells. Infect Immun 2005; 73 (4): 1907–16. DOI: 10.1128/IAI.73.4.1907-1916.2005

14. Zhang H., Zhou P., Wei Y., Yue H., Wang Y., Hu M., et al. Histopathologic changes and SARS-COV-2 immunostaining in the lung of a patient with COVID-19. Ann Intern Med 2020; 172 (9): 629–32. DOI: 10.7326/M20-0533

15. Yang M. Cell Pyroptosis, a Potential Pathogenic Mechanism of 2019-nCoV Infection. SSRN Electron J 2020. Available from: https://papers.ssrn.com/abstract=3527420

16. Ciceri F., Beretta L., Scandroglio A.M., Colombo S., Landoni G., Ruggeri A., et al. Microvascular COVID-19 lung vessels obstructive thromboinflammatory syndrome (MicroCLOTS): an atypical acute respiratory distress syndrome working hypothesis. Crit Care Resusc 2020; 22 (2): 95–7.

17. Wan S., Yi Q., Fan S., Lv J., Zhang X., Guo L., et al. Characteristics of lymphocyte subsets and cytokines in peripheral blood of 123 hospitalized patients with 2019 novel coronavirus pneumonia (NCP) [published online ahead of print Feb 12, 2020]. medRxiv. DOI: 10.1101/2020.02.10.20021832

18. Kang S., Tanaka T., Narazaki M., Kishimoto T. Targeting Interleukin-6 Signaling in Clinic. Immunity 2019; 50 (4): 1007–23. DOI: 10.1016/j.immuni.2019.03.026

19. Moore J.B., June C.H. Cytokine release syndrome in severe COVID- 19. Science 2020; 368 (6490): 473–4. DOI: 10.1126/science.abb8925

20. Tanaka T., Narazaki M., Kishimoto T. Immunotherapeutic implications of IL-6 blockade for cytokine storm. Immunotherapy 2016; 8 (8): 959–70. DOI: 10.2217/imt-2016-0020

21. Zuo Y., Yalavarthi S., Shi H., Gockman K., Zuo M., Madison J.A., et al. Neutrophil extracellular traps in COVID-19. JCI Insight 2020; 5 (11): е138999. DOI: 10.1172/jci.insight.138999

22. Raucci F., Mansour A.A., Casillo G.M., Saviano A., Caso F., Scarpa R., et al. Interleukin-17A (IL-17A), a key molecule of innate and adaptive immunity, and its potential involvement in COVID-19-related thrombotic and vascular mechanisms. Autoimmun Rev 2020; 19 (7): 102572. DOI: 10.1016/j.autrev.2020.102572

23. Barnes B.J., Adrover J.M., Baxter-Stoltzfus A., Borczuk A., Cools-Lartigue J., Crawford J.M., et al. Targeting potential drivers of COVID-19: Neutrophil extracellular traps. J Exp Med 2020; 217 (6): e20200652. DOI: 10.1084/jem.20200652

24. COVID-19 Treatment Guidelines Panel. Coronavirus Disease 2019 (COVID-19) Treatment Guidelines. National Institutes of Health. Available at https://www.covid19treatmentguidelines.nih.gov/.

25. AminJafari A., Ghasemi S. The possible of immunotherapy for COVID- 19: A systematic review. Int Immunopharmacol 2020; 83: 106455. DOI: 10.1016/j.intimp.2020.106455

26. Blanco-Melo D., Nilsson-Payant B.E., Liu W.C., Uhl S., Hoagland D., Møller R., et al. Imbalanced Host Response to SARS-CoV-2 Drives Development of COVID-19. Cell 2020; 181 (5): 1036–45.e9.

27. Chen I.Y., Moriyama M., Chang M.F., Ichinohe T. Severe acute respiratory syndrome coronavirus viroporin 3a activates the NLRP3 inflammasome. Front Microbiol 2019; 10: 50. DOI: 10.3389/fmicb.2019.00050

28. Loppnow H., Libby P. Proliferating or interleukin 1-activated human vascular smooth muscle cells secrete copious interleukin 6. J Clin Invest 1990; 85 (3): 731–8. DOI: 10.1172/JCI114498

29. Buckley L.F., Wohlford G.F., Ting C., Alahmed A., Van Tassell B.W., Abbate A., et al. Role for Anti-Cytokine Therapies in Severe Coronavirus Disease 2019. Crit Care Explor 2020; 2 (8): e0178. DOI: 10.1097/CCE.0000000000000178

30. Cavalli G., De Luca G., Campochiaro C., Della-Torre E., Ripa M., Canetti D., et al. Interleukin-1 blockade with highdose anakinra in patients with COVID- 19, acute respiratory distress syndrome, and hyperinflammation: a retrospective cohort study. Lancet Rheumatol 2020; 2 (6): e325–31. DOI: 10.1016/S2665-9913(20)30127-2

31. Pontali E., Volpi S., Signori A., Antonucci G., Castellaneta M., Buzzi D., et al. Efficacy of early anti-inflammatory treatment with high doses of intravenous anakinra with or without glucocorticoids in patients with severe COVID-19 pneumonia. J Allergy Clin Immunol 2021; 147 (4): 1217–25. DOI: 10.1016/j.jaci.2021.01.024

32. Ucciferri C., Auricchio A., Di Nicola M., Potere N., Abbate A., Cipollone F., et al. Canakinumab in a subgroup of patients with COVID-19. Lancet Rheumatol 2020; 2 (8): e457–8. DOI: 10.1016/S2665-9913(20)30167-3

33. Xu X., Han M., Li T., Sun W., Wang D., Fu B., et al. Effective treatment of severe COVID-19 patients with tocilizumab. Proc Natl Acad Sci U S A 2020; 117 (20): 10970–5. DOI: 10.1073/pnas.2005615117

34. Malekzadeh R., Abedini A., Mohsenpour B., Sharifipour E., Ghasemian R., Javad-Mousavi S.A., et al. Subcutaneous tocilizumab in adults with severe and critical COVID-19: A prospective open-label uncontrolled multicenter trial. Int Immunopharmacol 2020; 89: 107102. DOI: 10.1016/j.intimp.2020.107102

35. Stone J.H., Frigault M.J., Serling-Boyd N.J., Fernandes A.D., Harvey L., Foulkes A.S., et al. Efficacy of Tocilizumab in Patients Hospitalized with Covid-19. N Engl J Med 2020; 383 (24): 2333–44. DOI: 10.1056/NEJMoa2028836

36. Alattar R., Ibrahim T.B.N., Shaar S.H., Abdalla S.A., Shukri K., Daghfal J.N., et al. Tocilizumab for the treatment of severe coronavirus disease 2019. J Med Virol 2020; 92: 2042–9.

37. Tsai A., Diawara O., Nahass R.G., Brunetti L. Impact of tocilizumab administration on mortality in severe COVID- 19. Sci Rep 2020; 10 (1): 19131. DOI: 10.1038/s41598-020-76187-y

38. Klopfenstein T., Zayet S., Lohse A., Balblanc J.C., Badie J., Royer P.Y., et al. Tocilizumab therapy reduced intensive care unit admissions and/or mortality in COVID-19 patients. Med Mal Infect 2020; 50: 397–400.

39. Toniati P., Piva S., Cattalini M., Garrafa E., Regola F., Castelli F., et al. Tocilizumab for the treatment of severe COVID-19 pneumonia with hyperinflammatory syndrome and acute respiratory failure: A single center study of 100 patients in Brescia, Italy. Autoimmun Rev 2020; 19 (7): 102568. DOI: 10.1016/j.autrev.2020.102568

40. Guaraldi G., Meschiari M., CozziLepri A., Milic J., Tonelli R., Menozzi M., et al. Tocilizumab in patients with severe COVID-19: a retrospective cohort study. Lancet Rheumatol 2020; 2 (8): e474–84. doi: 10.1016/S2665-9913(20)30173-9

41. Potere N., Di Nisio M., Cibelli D., Scurti R., Frattari A., Porreca E., et al. Interleukin-6 receptor blockade with subcutaneous tocilizumab in severe COVID-19 pneumonia and hyperinflammation: a case-control study. Ann Rheum Dis 2021; 80 (2): 1–2. DOI: 10.1136/annrheumdis-2020-218243

42. Rojas-Marte G., Khalid M., Mukhtar O., Hashmi A.T., Waheed M.A., Ehrlich S., et al. Outcomes in patients with severe COVID-19 disease treated with tocilizumab: A case-controlled study. QJM 2020; 113 (8): 546–50. DOI: 10.1093/qjmed/hcaa206

43. Colaneri M., Bogliolo L., Valsecchi P., Sacchi P., Zuccaro V., Brandolino F., et al. Tocilizumab for treatment of severe covid-19 patients: Preliminary results from smatteo covid19 registry (smacore). Microorganisms 2020; 8 (5): 695. DOI: 10.3390/microorganisms8050695

44. Regeneron and Sanofi Provide Update on U.S. Phase 2/3 Adaptive-Designed Trial of Kevzara® (sarilumab) in Hospitalized COVID-19 Patients | Regeneron Pharmaceuticals Inc. [Internet]. [cited 2021 Jun 3]. Available from: https://investor.regeneron.com/news-releases/news-release-details/regeneron-and-sanofi-provideupdate-us-phase-23-adaptive.

45. Титова О.Н., Волчков В.А., Кузубова Н.А., Козырев А.Г., Волчкова Е.В., Крошкина И.Ю. Клинико-лабораторные и лучевые параметры, ассоциируемые с различными исходами новой коронавирусной инфекции (COVID-19) тяжелого течения с пневмонией у пациентов, получавших тоцилизумаб. Медицинский Альянс 2021; (1). Доступно по: https://med-alyans.ru/index.php/Hahn/article/view/707. Ссылка активна на 10.08.2021.

46. Sciascia S., Aprà F., Baffa A., Baldovino S., Boaro D., Boero R., et al. Pilot prospective open, single-arm multicentre study on off-label use of tocilizumab in patients with severe COVID- 19. Clin Exp Rheumatol 2020; 38 (3): 529–32.

47. Salvarani C., Dolci G., Massari M., Merlo D.F., Cavuto S., et al. Tocilizumab No “Silver Bullet” in Fight Against COVID-19. JAMA Intern Med. 2020.

48. Babon J.J., Lucet I.S., Murphy J.M., Nicola N.A., Varghese L.N. The molecular regulation of Janus kinase (JAK) activation. Biochem J 2014; 462 (1): 1–13. DOI: 10.1042/BJ20140712

49. Bousoik E., Montazeri Aliabadi H. “Do We Know Jack” About JAK? A Closer Look at JAK/STAT Signaling Pathway. Front Oncol 2018; 8: 287. DOI: 10.3389/fonc.2018.00287

50. Cantini F., Niccoli L., Matarrese D., Nicastri E., Stobbione P., Goletti D. Baricitinib therapy in COVID-19: A pilot study on safety and clinical impact. J Infect 2020; 81 (2): 318–56. DOI: 10.1016/j.jinf.2020.04.017

51. Kalil A.C., Patterson T.F., Mehta A.K., Tomashek K.M., Wolfe C.R., Ghazaryan V., et al. Baricitinib plus Remdesivir for Hospitalized Adults with Covid-19. N Engl J Med 2021; 384 (9): 795–807. DOI: 10.1056/NEJMoa2031994

52. Cao Y., Wei J., Zou L., Jiang T., Wang G., Chen L., et al. Ruxolitinib in treatment of severe coronavirus disease 2019 (COVID-19): A multicenter, single-blind, randomized controlled trial. J Allergy Clin Immunol 2020; 146 (1): 137–46.e3. DOI: 10.1016/j.jaci.2020.05.019

53. Roschewski M., Lionakis M.S., Sharman J.P., Roswarski J., Goy A., Monticelli M.A., et al. Inhibition of Bruton tyrosine kinase in patients with severe COVID-19. Sci Immunol 2020; 5 (48): eabd0110. DOI: 10.1126/sciimmunol.abd0110

54. Moradimajd P., Samaee H., Sedigh-Maroufi S., Kourosh-Aami M., Mohsenzadagan M. Administration of intravenous immunoglobulin in the treatment of COVID-19: A review of available evidence. J Med Virol 2021; 93: 2675–82. DOI: 10.1002/jmv.26727

55. Jawhara S. Could intravenous immunoglobulin collected from recovered coronavirus patients protect against covid-19 and strengthen the immune system of new patients? Int J Molecular Sci 2020; 21 (7): 2272. DOI: 10.3390/ijms21072272

56. Samson M., Fraser W., Lebowitz D. Treatments for Primary Immune Thrombocytopenia: A Review. Cureus 2019; 11 (10): e5849. DOI: 10.7759/cureus.5849

57. Alhazzani W., Møller M.H., Arabi Y.M., Loeb M., Gong M.N., Fan E., et al. Surviving Sepsis Campaign: Guidelines on the Management of Critically Ill Adults with Coronavirus Disease 2019 (COVID-19). Crit Care Med 2020; 48 (6): е440–69. DOI: 10.1097/CCM.0000000000004363

58. Huang M., Yang Y., Shang F., Zheng Y., Zhao W., Luo L., et al. Early and Critical Care in Severe Patients with COVID-19 Infection in Jiangsu Province, China: A Descriptive Study. SSRN Electron J 2020; 360 (2): 120– 8. DOI: 10.1016/j.amjms.2020.05.038

59. Cao W., Liu X., Bai T., Fan H., Hong K., Song H., et al. High-dose intravenous immunoglobulin as a therapeutic option for deteriorating patients with coronavirus disease 2019. Open Forum Infect Dis 2020; 7 (3): ofaa102. DOI: 10.1093/ofid/ofaa102

60. Xie Y., Cao S., Dong H., Li Q., Chen E., Zhang W., et al. Effect of regular intravenous immunoglobulin therapy on prognosis of severe pneumonia in patients with COVID-19. J Infect 2020; 81 (2): 318–56. DOI: 10.1016/j.jinf.2020.03.044

61. Zhou Z.-G., Xie S.-M., Zhang J., Zheng F., Jiang D.-X., Li K.-Y., et al. Short-term moderate-dose corticosteroid plus immunoglobulin effectively reverses COVID-19 patients who have failed low-dose therapy. [Internet]. Preprints. 2020. Available from: www.preprints.org

62. Shao Z., Feng Y., Zhong L., Xie Q., Lei M., Liu Z., et al. Clinical efficacy of intravenous immunoglobulin therapy in critical ill patients with COVID-19: a multicenter retrospective cohort study. Clin Transl Immunol 2020; 9 (10): е1192. DOI: 10.1002/cti2.1192

63. Marano G., Vaglio S., Pupella S., Facco G., Catalano L., Liumbruno G.M., et al. Convalescent plasma: New evidence for an old therapeutic tool? Blood Transfus 2016; 14 (2): 152– 7. DOI: 10.2450/2015.0131-15

64. Pathak E.B. Convalescent plasma is ineffective for covid-19. BMJ 2020; 371: m4072. DOI: 10.1136/bmj.m4072

65. Simonovich V.A., Burgos Pratx L.D., Scibona P., Beruto M.V., Vallone M.G., Vázquez C., et al. A Randomized Trial of Convalescent Plasma in Covid- 19 Severe Pneumonia. N Engl J Med 2021; 384 (7): 619–29. DOI: 10.1056/NEJMoa2031304

66. Libster R., Pérez Marc G., Wappner D., Coviello S., Bianchi A., Braem V., et al. Early High-Titer Plasma Therapy to Prevent Severe Covid-19 in Older Adults. N Engl J Med 2021; 384 (7): 610–8. DOI: 10.1056/NEJMoa2033700

67. Salazar E., Christensen P.A., Graviss E.A., Nguyen D.T., Castillo B., Chen J., et al. Treatment of Coronavirus Disease 2019 Patients with Convalescent Plasma Reveals a Signal of Significantly Decreased Mortality. Am J Pathol 2020; 190 (11): 2290–303. DOI: 10.1016/j.ajpath.2020.08.001

68. Khamis F., Al-Zakwani I., Al Hashmi S., Al Dowaiki S., Al Bahrani M., Pandak N., et al. Therapeutic plasma exchange in adults with severe COVID-19 infection. Int J Infect Dis 2020; 99: 214–8.

69. Li L., Zhang W., Hu Y., Tong X., Zheng S., Yang J., et al. Effect of Convalescent Plasma Therapy on Time to Clinical Improvement in Patients with Severe and Life-threatening COVID- 19: A Randomized Clinical Trial. JAMA 2020; 324 (5): 460–70. DOI: 10.1001/jama.2020.10044

70. Gharbharan A., Jordans C.C.E., Geurtsvankessel K.G., den Hollander G.J., Femke K.F.P.N., Mollema F.P.N., et al. Convalescent plasma for COVID-19: a randomized clinical trial. medRxiv. 2020. [Preprint].

71. Agarwal A., Mukherjee A., Kumar G., Chatterjee P., Bhatnagar T., Malhotra P. Convalescent plasma in the management of moderate COVID-19 in India: An open-label parallel-arm phase II multicentre randomized controlled trial (PLACID Trial). BMJ 2020; 371: m3939. DOI: 10.1136/bmj.m3939

72. Joyner M.J., Senefeld J.W., Klassen S.A., Mills J.R., Johnson P.W., Theel E.S., et al. Effect of Convalescent Plasma on Mortality among Hospitalized Patients with COVID- 19: Initial Three-Month Experience. medRxiv Prepr Serv Heal Sci 2020; 2020.08.12.20169359. [Preprint]. DOI: 10.1101/2020.08.12.20169359

73. Liu S.T.H., Lin H.M., Baine I., Wajnberg A., Gumprecht J.P., Rahman F., et al. Convalescent plasma treatment of severe COVID-19: a propensity score–matched control study. Nat Med 2020; 26 (11): 1708–13. DOI: 10.1038/s41591-020-1088-9

74. Zhang Q., Wang Y., Qi C., Shen L., Li J. Clinical trial analysis of 2019- nCoV therapy registered in China. J Med Virol 2020; 92 (6): 540–5. DOI: 10.1002/jmv.25733

75. Sun Y., Dong Y., Wang L., Xie H., Li B., Chang C., et al. Characteristics and prognostic factors of disease severity in patients with COVID-19: The Beijing experience. J Autoimmun 2020; 112: 102473. DOI: 10.1016/j.jaut.2020.102473

76. Izcovich A., Ragusa M.A., Tortosa F., Marzio M.A.L., Agnoletti C., Bengolea A., et al. Prognostic factors for severity and mortality in patients infected with COVID-19: A systematic review. PLoS One 2020; 15 (11): e0241955. DOI: 10.1371/journal.pone.0241955

77. Wang M., Zhu Q., Fu J., Liu L., Xiao M., Du Y. Differences of inflammatory and non-inflammatory indicators in Coronavirus disease-19 (COVID- 19) with different severity. Infect Genet Evol 2020; 85: 104511. DOI: 10.1016/j.meegid.2020.104511

78. Mann E.R., Menon M., Knight S.B., Konkel J.E., Jagger C., Shaw T.N., et al. Longitudinal immune profiling reveals key myeloid signatures associated with COVID-19. Sci Immunol 2020; 5 (51): eabd6197. DOI: 10.1126/sciimmunol.abd6197

79. Liu J., Li S., Liu J., Liang B., Wang X., Wang H., et al. Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients. EBioMedicine 2020; 55: 102763. DOI: 10.1016/j.ebiom.2020.102763

80. Mathew D., Giles J.R., Baxter A.E., Oldridge D.A., Greenplate A.R., Wu J.E., et al. Deep immune profiling of COVID-19 patients reveals distinct immunotypes with therapeutic implications. Science 2020; 369 (6508): eabc8511. DOI: 10.1126/science.abc8511

81. Diao B., Wang C., Tan Y., Chen X., Liu Y., Ning L., et al. Reduction and Functional Exhaustion of T Cells in Patients With Coronavirus Disease 2019 (COVID-19). Front Immunol 2020; 11: 827. DOI: 10.3389/fimmu.2020.00827

82. Kuri-Cervantes L., Pampena M.B., Meng W., Rosenfeld A.M., Ittner C.A.G., Weisman A.R., et al. Comprehensive mapping of immune perturbations associated with severe COVID-19. Sci Immunol 2020; 5 (49): eabd7114. DOI: 10.1126/sciimmunol.abd7114

83. Chen R., Sang L., Jiang M., Yang Z., Jia N., Fu W., et al. Longitudinal hematologic and immunologic variations associated with the progression of COVID-19 patients in China. J Allergy Clin Immunol 2020; 146 (1): 89–100. DOI: 10.1016/j.jaci.2020.05.003

84. Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y., et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395 (10223): 497– 506. DOI: 10.1016/S0140-6736(20)30183-5

85. Yang Y., Shen C., Li J., Yuan J., Yang M., Wang F., et al. Exuberant elevation of IP-10, MCP-3 and IL-1ra during SARS-CoV-2 infection is associated with disease severity and fatal outcome. medRxiv 20029975 [Preprint]. 2020.

86. Chen L.Y.C., Hoiland R.L., Stukas S., Wellington C.L., Sekhon M.S. Confronting the controversy: Interleukin-6 and the COVID-19 cytokine storm syndrome. Eur Respir J 2020; 56 (4): 2003006. DOI: 10.1183/13993003.03006-2020

87. Laing A.G., Lorenc A., del Molino del Barrio I., Das A., Fish M., Monin L., et al. A dynamic COVID-19 immune signature includes associations with poor prognosis. Nat Med 2020; 26 (10): 1623–35. DOI: 10.1038/s41591-020-1038-6

88. Yang Y., Shen C., Li J., Yuan J., Wei J., Huang F., et al. Plasma IP-10 and MCP-3 levels are highly associated with disease severity and predict the progression of COVID-19. J Allergy Clin Immunol 2020; 146 (1): 119–27. e4. DOI: 10.1016/j.jaci.2020.04.027

89. Abers M.S., Delmonte O.M., Ricotta E.E., Fintzi J., Fink D.L., Almeida de Jesus A.A., et al. An immune-based biomarker signature is associated with mortality in COVID-19 patients. JCI Insight 2021; 6 (1): е144455. DOI: 10.1172/jci.insight.144455

90. Sabaka P., Koščálová A., Straka I., Hodosy J., Lipták R., Kmotorková B., et al. Role of interleukin 6 as a predictive factor for a severe course of Covid-19: retrospective data analysis of patients from a long-term care facility during Covid-19 outbreak. BMC Infect Dis 2021; 21 (1): 1–8. DOI: 10.1186/s12879-021-05945-8

91. Sun H., Guo P., Zhang L., Wang F. Serum interleukin-6 concentrations and the severity of COVID-19 pneumonia: A retrospective study at a single center in Bengbu City, Anhui Province, China, in January and February 2020. Med Sci Monit 2020; 26: е926941. DOI: 10.12659/MSM.926941

92. Caricchio R., Gallucci M., Dass C., Zhang X., Gallucci S., Fleece D., et al. Preliminary predictive criteria for COVID-19 cytokine storm. Ann Rheum Dis 2021; 80 (1): 88–95. DOI: 10.1136/annrheumdis-2020-218323

93. Cappanera S., Palumbo M., Kwan S.H., Priante G., Martella L.A., Saraca L.M., et al. When Does the Cytokine Storm Begin in COVID-19 Patients? A Quick Score to Recognize It. J Clin Med 2021; 10 (2): 297. DOI: 10.3390/jcm10020297


Для цитирования:


Малкова А.М., Старшинова А.А., Кудрявцев И.В., Довгалюк И.Ф., Зинченко Ю.С., Кудлай Д.А. Возможности иммунотерапии в лечении COVID-19. Вопросы гематологии/онкологии и иммунопатологии в педиатрии. 2021;20(3):158-168. https://doi.org/10.24287/1726-1708-2021-20-3-158-168

For citation:


Malkova A.M., Starshinovа A.A., Kudryavtsev I.V., Dovgalyuk I.F., Zinchenko Yu.S., Kudlay D.A. Immunotherapy in the Treatment of COVID-19. Pediatric Hematology/Oncology and Immunopathology. 2021;20(3):158-168. (In Russ.) https://doi.org/10.24287/1726-1708-2021-20-3-158-168

Просмотров: 154


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1726-1708 (Print)
ISSN 2414-9314 (Online)