Preview

Вопросы гематологии/онкологии и иммунопатологии в педиатрии

Расширенный поиск

Современные представления об этиологии и патогенезе ALK-позитивной анапластической крупноклеточной лимфомы

https://doi.org/10.24287/1726-1708-2024-23-1-180-191

EDN: QZKGMJ

Аннотация

   ALK-позитивная анапластическая крупноклеточная лимфома представляет собой зрелоклеточную T-клеточную лимфому, характеризующуюся транслокациями с вовлечением гена, кодирующего рецепторную тирозинкиназу ALK. Одной из особенностей заболевания является его встречаемость почти исключительно среди детей и молодых взрослых. Биология ALK-позитивной анапластической лимфомы на сегодняшний день изучена достаточно хорошо, причем исследования последних лет уделяют большое внимание гистогенезу неоплазии. Настоящий обзор посвящен анализу современных мировых данных об этиологии и патогенезе данного заболевания.

Об авторах

Д. С. Абрамов
ФГБУ «Национальный медицинский исследовательский центр детской гематологии, онкологии и иммунологии им. Дмитрия Рогачева» Минздрава России
Россия

Дмитрий Сергеевич Абрамов, врач-патологоанатом

патологоанатомическое отделение

117997; ул. Саморы Машела, 1; Москва



А. С. Федорова
ФГБУ «Национальный медицинский исследовательский центр детской гематологии, онкологии и иммунологии им. Дмитрия Рогачева» Минздрава России
Россия

Москва



Е. В. Волчков
ФГБУ «Национальный медицинский исследовательский центр детской гематологии, онкологии и иммунологии им. Дмитрия Рогачева» Минздрава России; Научно-исследовательский институт молекулярной и клеточной медицины ФГАОУ ВО «Российский университет дружбы народов им. Патриса Лумумбы»
Россия

Москва



Н. В. Мякова
ФГБУ «Национальный медицинский исследовательский центр детской гематологии, онкологии и иммунологии им. Дмитрия Рогачева» Минздрава России
Россия

Москва



Д. М. Коновалов
ФГБУ «Национальный медицинский исследовательский центр детской гематологии, онкологии и иммунологии им. Дмитрия Рогачева» Минздрава России; ФГБОУ ДПО «Российская медицинская академия непрерывного профессионального образования» Минздрава России
Россия

Москва



Список литературы

1. Lowe E.J., Gross T.G. Anaplastic large cell lymphoma in children and adolescents. Pediatr Hematol Oncol 2013; 30 (6): 509–19. DOI: 10.3109/08880018.2013.805347

2. Stein H., Foss H.D., Durkop H., Marafioti T., Delsol G., Pulford K., et al. CD30+ anaplastic large cell lymphoma: a review of its histopathologic, genetic, and clinical features. Blood 2000; 96 (12): 3681–95. DOI: 10.1182/BLOOD.V96.12.3681

3. Falini B., Lamant L., Campo E., Jaffe E.S., Gascoyne R.D., Stein H., et al. Anaplastic large cell lymphoma, ALK positive. In: Swerdlow S.H., Campo E., Harris N.L., Jaffe E.S., Pileri S.A., Stein H. (eds.). Who Classification of Tumors of Hematopoietic and Lymphoid Tissues. IARC: Lyon (France); 2017. Рp. 413–418.

4. Benharroch D., Meguerian-Bedoyan Z., Lamant L., Amin C., Brugières L., Terrier-Lacombe M.J., et al. ALK-positive lymphoma: A single disease with a broad spectrum of morphology. Blood 1998; 91 (6): 2076–84. URL: https://www.researchgate.net/publication/13740376_ALK-Positive_Lymphoma_A_Single_Disease_With_a_Broad_Spectrum_of_Morphology

5. Lamant L., McCarthy K., D’Amore E., Klapper W., Nakagawa A., Fraga M., et al. Prognostic impact of morphologic and phenotypic features of childhood ALK-positive anaplastic large-cell lymphoma: results of the ALCL99 study. J Clin Oncol 2011; 29 (35): 4669–76. DOI: 10.1200/JCO.2011.36.5411

6. Seidemann K., Tiemann M., Schrappe M., Yakisan E., Simonitsch I., Janka-Schaub G., et al. Short-pulse B–non-Hodgkin lymphoma–type chemotherapy is efficacious treatment for pediatric anaplastic large cell lymphoma: a report of the Berlin-Frankfurt-Münster Group Trial NHL-BFM 90. Blood 2001; 97 (12): 3699–706. DOI: 10.1182/BLOOD.V97.12.3699

7. Tole S., Wheaton L., Alexander S. Pediatric Anaplastic Large Cell Lymphoma – A Review. Oncol Hematol Rev 2018; 14 (1): 21–7.

8. Morris S.W., Naeve C., Mathew P., James P.L., Kirstein M.N., Cui X., et al. ALK, the chromosome 2 gene locus altered by the t(2;5) in non-Hodgkin’s lymphoma, encodes a novel neural receptor tyrosine kinase that is highly related to leukocyte tyrosine kinase (LTK). Oncogene 1997; 14 (18): 2175–88. DOI: 10.1038/SJ.ONC.1201062

9. Morris S.W., Kirstein M.N., Valentine M.B., Dittmer K.G., Shapiro D.N., Saltman D.L., et al. Fusion of a Kinase Gene, ALK, to a Nucleolar Protein Gene, NPM, in Non-Hodgkin’s Lymphoma. Science 1994; 263 (5151): 1281–4. DOI: 10.1126/SCIENCE.8122112

10. Iwahara T., Fujimoto J., Wen D., Cupples R., Bucay N., Arakawa T. et al. Molecular characterization of ALK, a receptor tyrosine kinase expressed specifically in the nervous system. Oncogene 1997; 14 (4): 439–49. DOI: 10.1038/SJ.ONC.1200849

11. Chiarle R., Voena C., Ambrogio C., Piva R., Inghirami G. The anaplastic lymphoma kinase in the pathogenesis of cancer. Nat Rev Cancer 2008; 8 (1): 11–23. DOI: 10.1038/NRC2291

12. Kinney M.C., Higgins R.A., Medina E.A. Anaplastic large cell lymphoma: twenty-five years of discovery. Arch Pathol Lab Med 2011; 135 (1): 19–43. DOI: 10.5858/2010-0507-RAR.1

13. Ladanyi M., Cavalchire G. Molecular variant of the NPM-ALK rearrangement of Ki-1 lymphoma involving a cryptic ALK splice site. Genes Chromosomes Cancer 1996; 15 (3): 173–7. URL: https://pubmed.ncbi.nlm.nih.gov/8721682/

14. Grisendi S., Mecucci C., Falini B., Pandolfi P.P. Nucleophosmin and cancer. Nat Rev Cancer 2006; 6 (7): 493–505. DOI: 10.1038/NRC1885

15. Cools J., Wlodarska I., Somers R., Mentens N., Pedeutour F., Maes B. et al. Identification of novel fusion partners of ALK, the anaplastic lymphoma kinase, in anaplastic large-cell lymphoma and inflammatory myofibroblastic tumor. Genes Chromosomes Cancer 2002; 34 (4): 354–62. DOI: 10.1002/GCC.10033

16. Hernández L., Beà S., Bellosillo B., Pinyol M., Falini B., Carbone A. et al. Diversity of genomic breakpoints in TFG-ALK translocations in anaplastic large cell lymphomas: identification of a new TFG-ALK(XL) chimeric gene with transforming activity. Am J Pathol 2002; 160 (4): 1487–94. DOI: 10.1016/S0002-9440(10)62574-6

17. Lamant L., Dastugue N., Pulford K., Delsol G., Mariamé B. A new fusion gene TPM3-ALK in anaplastic large cell lymphoma created by a (1;2)(q25;p23) translocation. Blood 1999; 93 (9): 3088–95. DOI: 10.1182/blood.v93.9.3088.409k30_3088_3095

18. Meech S.J., McGavran L., Odom L.F., Liang X., Maltesen L., Gump J., et al. Unusual childhood extramedullary hematologic malignancy with natural killer cell properties that contains tropomyosin 4-anaplastic lymphoma kinase gene fusion. Blood 2001; 98 (4): 1209–16. DOI: 10.1182/BLOOD.V98.4.1209

19. Lamant L., Gascoyne R.D., Duplantier M.M., Armstrong F., Raghab A., Chhanabhai M. et al. Non-muscle myosin heavy chain (MYH9): a new partner fused to ALK in anaplastic large cell lymphoma. Genes Chromosomes Cancer 2003; 37 (4): 427–32. DOI: 10.1002/GCC.10232

20. Touriol C., Greenland C., Lamant L., Pulford K., Bernard F., Rousset T. et al. Further demonstration of the diversity of chromosomal changes involving 2p23 in ALK-positive lymphoma: 2 cases expressing ALK kinase fused to CLTCL (clathrin chain polypeptide-like). Blood 2000; 95 (10): 3204–7. DOI: 10.1182/blood.v95.10.3204.010k04_3204_3207

21. Colleoni G.W.B., Bridge J.A., Garicochea B., Liu J., Filippa D.A., Ladanyi M. ATIC-ALK: A novel variant ALK gene fusion in anaplastic large cell lymphoma resulting from the recurrent cryptic chromosomal inversion, inv(2)(p23q35). Am J Pathol 2000; 156 (3): 781–9. DOI: 10.1016/S0002-9440(10)64945-0

22. Tort F., Pinyol M., Pulford K., Roncador G., Hernandez L., Nayach I., et al. Molecular characterization of a new ALK translocation involving moesin (MSN-ALK) in anaplastic large cell lymphoma. Lab Invest 2001; 81 (3): 419–26. DOI: 10.1038/LABINVEST.3780249

23. Swerdlow S.H., Campo E., Harris N.L., Jaffe E.S., Pileri S.A., Stein H., et al. (eds.). World Health Organization (WHO) classification of tumours of haematopoietic and lymphoid tissues. IARC: Lyon (France); 2008.

24. Чернышова Е.В., Абрамов Д.С., Коновалов Д.М., Ларин С.С., Мякова Н.В. Молекулярно-биологические характеристики ALK-позитивной анапластической крупноклеточной лимфомы. Онкогематология 2016; (4): 25–31. DOI: 10.17650/1818-8346-2016-11-4-25-31.

25. Maes B., Vanhentenrijk V., Wlodarska I., Cools J., Peeters B., Marynen P., et al. The NPM-ALK and the ATIC-ALK fusion genes can be detected in non-neoplastic cells. Am J Pathol 2001; 158 (6): 2185–93. DOI: 10.1016/S0002-9440(10)64690-1

26. Trümper L., Pfreundschuh M., Bonin F.V., Daus H. Detection of the t(2;5)-associated NPM/ALK fusion cDNA in peripheral blood cells of healthy individuals. Br J Haematol 1998; 103 (4): 1138–44. DOI: 10.1046/J.1365-2141.1998.01097.X

27. McDuff F.K.E., Turner S.D. Aberrant anaplastic lymphoma kinase activity induces a p53 and Rb-dependent senescence-like arrest in the absence of detectable p53 stabilization. PLoS One 2011; 6 (3): e17854. DOI: 10.1371/JOURNAL.PONE.0017854

28. Martinelli P., Bonetti P., Sironi C., Pruneri G., Fumagalli C., Raviele P.R., et al. The lymphoma-associated NPM-ALK oncogene elicits a p16INK4a/pRb-dependent tumor-suppressive pathway. Blood 2011; 117 (24): 6617–26. DOI: 10.1182/BLOOD-2010-08-301135

29. Salaverria I., Beà S., Lopez-Guillermo A., Lespinet V., Pinyol M., Burkhardt B., et al. Genomic profiling reveals different genetic aberrations in systemic ALK-positive and ALK-negative anaplastic large cell lymphomas. Br J Haematol 2008; 140 (5): 516–26. DOI: 10.1111/J.1365-2141.2007.06924.X

30. Marzec M., Kasprzycka M., Liu X., El-Salem M., Halasa K., Raghunath P.N., et al. Oncogenic tyrosine kinase NPM/ALK induces activation of the rapamycin-sensitive mTOR signaling pathway. Oncogene 2007; 26 (38): 5606–14. DOI: 10.1038/SJ.ONC.1210346

31. Wellmann A., Doseeva V., Butscher W., Raffeld M., Fukushima P., Stetler‐Stevenson M., et al. The activated anaplastic lymphoma kinase increases cellular proliferation and oncogene up-regulation in rat 1a fibroblasts. FASEB J 1997; 11 (12): 965–72. DOI: 10.1096/FASEBJ.11.12.9337149

32. Fujimoto J., Shiota M., Iwahara T., Seki N., Satoh H., Mori S., et al. Characterization of the transforming activity of p80, a hyperphosphorylated protein in a Ki-1 lymphoma cell line with chromosomal translocation t(2;5). Proc Natl Acad Sci U S A 1996; 93 (9): 4181–6. DOI: 10.1073/PNAS.93.9.4181

33. Voena C., Conte C., Ambrogio C., Erba E.B., Boccalatte F., Mohammed S., et al. The tyrosine phosphatase Shp2 interacts with NPM-ALK and regulates anaplastic lymphoma cell growth and migration. Cancer Res 2007; 67 (9): 4278–86. DOI: 10.1158/0008-5472.CAN-06-4350

34. Sattler M., Mohi M.G., Pride Y.B., Quinnan L.R., Malouf N.A., Podar K., et al. Critical role for Gab2 in transformation by BCR/ABL. Cancer Cell 2002; 1 (5): 479–92. DOI: 10.1016/S1535-6108(02)00074-0

35. Leventaki V., Drakos E., Medeiros L.J., Lim M.S., Elenitoba-Johnson K.S., Claret F.X., et al. NPM-ALK oncogenic kinase promotes cell-cycle progression through activation of JNK/cJun signaling in anaplastic large-cell lymphoma. Blood 2007; 110 (5): 1621–30. DOI: 10.1182/BLOOD-2006-11-059451

36. Liang H.C., Costanza M., Prutsch N., Zimmerman M.W., Gurnhofer E., Montes-Mojarro I.A., et al. Super-enhancer-based identification of a BATF3/IL-2R−module reveals vulnerabilities in anaplastic large cell lymphoma. Nat Commun 2021 121 2021; 12 (1): 1–12. DOI: 10.1038/s41467-021-25379-9

37. Malek T.R., Castro I. Interleukin-2 receptor signaling: at the interface between tolerance and immunity. Immunity 2010; 33 (2): 153–65. DOI: 10.1016/J.IMMUNI.2010.08.004

38. Bai R.-Y., Dieter P., Peschel C., Morris S.W., Duyster J. Nucleophosmin-anaplastic lymphoma kinase of large-cell anaplastic lymphoma is a constitutively active tyrosine kinase that utilizes phospholipase C-gamma to mediate its mitogenicity. Mol Cell Biol 1998; 18 (12): 6951–61. DOI: 10.1128/MCB.18.12.6951

39. Amin H.M., Medeiros L.J., Ma Y., Feretzaki M., Das P., Leventaki V., et al. Inhibition of JAK3 induces apoptosis and decreases anaplastic lymphoma kinase activity in anaplastic large cell lymphoma. Oncogene 2003; 22 (35): 5399–407. DOI: 10.1038/SJ.ONC.1206849

40. Han Y., Amin H.M., Frantz C., Franko B., Lee J., Lin Q., et al. Restoration of shp1 expression by 5-AZA-2’-deoxycytidine is associated with downregulation of JAK3/STAT3 signaling in ALK-positive anaplastic large cell lymphoma. Leukemia 2006; 20 (9): 1602–9. DOI: 10.1038/SJ.LEU.2404323

41. Zhang Q., Wang H.Y., Marzec M., Raghunath P.N., Nagasawa T., Wasik M.A. STAT3- and DNA methyltransferase 1-mediated epigenetic silencing of SHP-1 tyrosine phosphatase tumor suppressor gene in malignant T lymphocytes. Proc Natl Acad Sci U S A 2005; 102 (19): 6948–53. DOI: 10.1073/PNAS.0501959102

42. Zhang Q., Wang H.Y., Liu X., Wasik M.A. STAT5A is epigenetically silenced by the tyrosine kinase NPM1-ALK and acts as a tumor suppressor by reciprocally inhibiting NPM1-ALK expression. Nat Med 2007; 13 (11): 1341–8. DOI: 10.1038/NM1659

43. Vega F., Medeiros L.J., Leventaki V., Atwell C., Cho-Vega J.H., Tian L., et al. Activation of mammalian target of rapamycin signaling pathway contributes to tumor cell survival in anaplastic lymphoma kinase-positive anaplastic large cell lymphoma. Cancer Res 2006; 66 (13): 6589–97. DOI: 10.1158/0008-5472.CAN-05-3018

44. Gu T.L., Tothova Z., Scheijen B., Griffin J.D., Gilliland D.G., Sternberg D.W. NPM-ALK fusion kinase of anaplastic large-cell lymphoma regulates survival and proliferative signaling through modulation of FOXO3a. Blood 2004; 103 (12): 4622–9. DOI: 10.1182/BLOOD-2003-03-0820

45. Ambrogio C., Voena C., Manazza A.D., Piva R., Riera L., Barberis L., et al. p130Cas mediates the transforming properties of the anaplastic lymphoma kinase. Blood 2005; 106 (12): 3907–16. DOI: 10.1182/BLOOD-2005-03-1204

46. Horie R., Watanabe M., Ishida T., Koiwa T., Aizawa S., Itoh K., et al. The NPM-ALK oncoprotein abrogates CD30 signaling and constitutive NF-kappaB activation in anaplastic large cell lymphoma. Cancer Cell 2004; 5 (4): 353–64. DOI: 10.1016/S1535-6108(04)00084-4

47. Motegi A., Fujimoto J., Kotani M., Sakuraba H., Yamamoto T. ALK receptor tyrosine kinase promotes cell growth and neurite outgrowth. J Cell Sci 2004; 117 (Pt 15): 3319–29. DOI: 10.1242/JCS.01183

48. Cussac D., Greenland C., Roche S., Bai R.Y., Duyster J., Morris S.W., et al. Nucleophosmin-anaplastic lymphoma kinase of anaplastic large-cell lymphoma recruits, activates, and uses pp60c-src to mediate its mitogenicity. Blood 2003; 103 (4): 1464–71. DOI: 10.1182/BLOOD-2003-04-1038

49. Piva R., Pellegrino E., Mattioli M., Agnelli L., Lombardi L., Boccalatte F., et al. Functional validation of the anaplastic lymphoma kinase signature identifies CEBPB and Bcl2A1 as critical target genes. J Clin Invest 2006; 116 (12): 3171–82. DOI: 10.1172/JCI29401

50. Colomba A., Courilleau D., Ramel D., Billadeau D.D., Espinos E., Delsol G., et al. Activation of Rac1 and the exchange factor Vav3 are involved in NPM-ALK signaling in anaplastic large cell lymphomas. Oncogene 2007; 27 (19): 2728–36. DOI: 10.1038/SJ.ONC.1210921

51. Wang H., Wei W., Zhang J.P., Song Z., Li Y., Xiao W., et al. A novel model of alternative NF-kB pathway activation in anaplastic large cell lymphoma. Leukemia 2020; 35 (7): 1976–89. DOI: 10.1038/S41375-020-01088-Y

52. Xia L., Tan S., Zhou Y., Lin J., Wang H., Oyang L., et al. Role of the NFkB-signaling pathway in cancer. Onco Targets Ther 2018; 11: 2063–73. DOI: 10.2147/OTT.S161109

53. Rothwarf D.M., Karin M. The NF-kappa B activation pathway: a paradigm in information transfer from membrane to nucleus. Sci STKE 1999; 1999 (5): RE1. DOI: 10.1126/STKE.1999.5.RE1

54. Hayden M.S., Ghosh S. Signaling to NF-kappaB. Genes Dev 2004; 18 (18): 2195–224. DOI: 10.1101/GAD.1228704

55. Otto C., Giefing M., Massow A., Vater I., Gesk S., Schlesner M., et al. Genetic lesions of the TRAF3 and MAP3K14 genes in classical Hodgkin lymphoma. Br J Haematol 2012; 157(6): 702–8. DOI: 10.1111/J.1365-2141.2012.09113.X

56. Turner S.D. An Exploration into the Origins and Pathogenesis of Anaplastic Large Cell Lymphoma, Anaplastic Lymphoma Kinase (ALK)-Positive. Cancers (Basel) 2017; 9 (10): 14. DOI: 10.3390/cancers9100141

57. Eckerle S., Brune V., Döring C., Tiacci E., Bohle V., Sundström C., et al. Gene expression profiling of isolated tumour cells from anaplastic large cell lymphomas: insights into its cellular origin, pathogenesis and relation to Hodgkin lymphoma. Leukemia 2009; 23 (11): 2129–38. DOI: 10.1038/LEU.2009.161

58. Malcolm T.I.M., Villarese P., Fairbairn C.J., Lamant L., Trinquand A., Hook C.E., et al. Anaplastic large cell lymphoma arises in thymocytes and requires transient TCR expression for thymic egress. Nat Commun 2016; 7: 10087. DOI: 10.1038/NCOMMS10087

59. Kasprzycka M., Marzec M., Liu X., Zhang Q., Wasik M.A. Nucleophosmin/anaplastic lymphoma kinase (NPM/ALK) oncoprotein induces the T regulatory cell phenotype by activating STAT3. Proc Natl Acad Sci 2006; 103 (26): 9964–9. DOI: 10.1073/PNAS.0603507103

60. Matsuyama H., Suzuki H.I., Nishimori H., Noguchi M., Yao T., Komatsu N., et al. miR-135b mediates NPM-ALK–driven oncogenicity and renders IL-17–producing immunophenotype to anaplastic large cell lymphoma. Blood 2011; 118 (26): 6881–92. DOI: 10.1182/BLOOD-2011-05-354654

61. Laurent C., Lopez C., Desjobert C., Berrebi A., Damm-Welk C., Delsol G., et al. Circulating t(2;5)-positive cells can be detected in cord blood of healthy newborns. Leukemia 2011; 26 (1): 188–90. DOI: 10.1038/LEU.2011.209

62. Moti N., Malcolm T., Hamoudi R., Mian S., Garland G., Hook C.E., et al. Anaplastic large cell lymphoma-propagating cells are detectable by side population analysis and possess an expression profile reflective of a primitive origin. Oncogene 2014; 34 (14): 1843–52. DOI: 10.1038/ONC.2014.112

63. Fernandez A.F., Assenov Y., Martin-Subero J.I., Balint B., Siebert R., Taniguchi H., et al. A DNA methylation fingerprint of 1628 human samples. Genome Res 2011; 22 (2): 407–19. DOI: 10.1101/GR.119867.110

64. Hassler M.R., Pulverer W., Lakshminarasimhan R., Redl E., Hacker J., Garland G.D., et al. Insights into the Pathogenesis of Anaplastic Large-Cell Lymphoma through Genomewide DNA Methylation Profiling. Cell Rep 2016; 17 (2): 596–608. DOI: 10.1016/J.CELREP.2016.09.018

65. Bonzheim I., Geissinger E., Roth S., Zettl A., Marx A., Rosenwald A., et al. Anaplastic large cell lymphomas lack the expression of T-cell receptor molecules or molecules of proximal T-cell receptor signaling. Blood 2004; 104 (10): 3358–60. DOI: 10.1182/BLOOD-2004-03-1037

66. Delsol G., Falini B. Müller-Hermelink H.K., Campo E., Jaffe E.S., Gascoyne R.D. Anaplastic large cell lymphoma, ALK-positive. In: Swerdlow S.H., Campo E., Harris N.L., Jaffe E.S., Pileri S.A., Stein H., et al. (eds.). World Health Organization (WHO) classification of tumours of haematopoietic and lymphoid tissues. IARC: Lyon (France); 2008. Рp. 312–316.

67. Iqbal J., Weisenburger D.D., Greiner T.C., Vose J.M., McKeithan T., Kucuk C., et al. Molecular signatures to improve diagnosis in peripheral T-cell lymphoma and prognostication in angioimmunoblastic T-cell lymphoma. Blood 2010; 115 (5): 1026–36. DOI: 10.1182/BLOOD-2009-06-227579

68. Savan R., McFarland A.P., Reynolds D.A., Feigenbaum L., Ramakrishnan K., Karwan M., et al. A novel role for IL-22R1 as a driver of inflammation. Blood 2011; 117 (2): 575–84. DOI: 10.1182/BLOOD-2010-05-285908

69. Roncador G., Garcia J.F., Garcia J.F., Maestre L., Lucas E., Menarguez J., et al. FOXP3, a selective marker for a subset of adult T-cell leukaemia/lymphoma. Leukemia 2005; 19 (12): 2247–53. DOI: 10.1038/SJ.LEU.2403965

70. Pearson J.D., Lee J.K.H., Bacani J.T.C., Lai R., Ingham R.J. NPM-ALK and the JunB transcription factor regulate the expression of cytotoxic molecules in ALK-positive, anaplastic large cell lymphoma. Int J Clin Exp Pathol 2011; 4 (2): 124–33.

71. Hsu F.Y.Y., Johnston P.B., Burke K.A., Zhao Y. The expression of CD30 in anaplastic large cell lymphoma is regulated by nucleophosmin-anaplastic lymphoma kinase-mediated JunB level in a cell type-specific manner. Cancer Res 2006; 66 (18): 9002–8. DOI: 10.1158/0008-5472.CAN-05-4101

72. Watanabe M., Sasaki M., Itoh K., Higashihara M., Umezawa K., Kadin M.E., et al. JunB induced by constitutive CD30-extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase signaling activates the CD30 promoter in anaplastic large cell lymphoma and reed-sternberg cells of Hodgkin lymphoma. Cancer Res 2005; 65 (17): 7628–34. DOI: 10.1158/0008-5472.CAN-05-0925

73. Popnikolov N.K., Payne D.A., Hudnall S.D., Hawkins H.K., Kumar M., Norris B.A., et al. CD13-positive anaplastic large cell lymphoma of T-cell origin--a diagnostic and histogenetic problem. Arch Pathol Lab Med 2000; 124 (12): 1804–8. DOI: 10.5858/2000-124-1804-CPALCL

74. Thompson M.A., Stumph J., Henrickson S.E., Rosenwald A., Wang Q.F., Olson S., et al. Differential gene expression in anaplastic lymphoma kinase–positive and anaplastic lymphoma kinase–negative anaplastic large cell lymphomas. Hum Pathol 2005; 5 (36): 494–504. DOI: 10.1016/J.HUMPATH.2005.03.004

75. Agnelli L., Mereu E., Pellegrino E., Limongi T., Kwee I., Bergaggio E., et al. Identification of a 3-gene model as a powerful diagnostic tool for the recognition of ALK-negative anaplastic large-cell lymphoma. Blood 2012; 120 (6): 1274–81. DOI: 10.1182/BLOOD-2012-01-405555

76. Lamant L., De Reyniès A., Duplantier M.M., Rickman D.S., Sabourdy F., Giuriato S., et al. Gene-expression profiling of systemic anaplastic large-cell lymphoma reveals differences based on ALK status and two distinct morphologic ALK+ subtypes. Blood 2006; 109 (5): 2156–64. DOI: 10.1182/BLOOD-2006-06-028969

77. Piva R., Agnelli L., Pellegrino E., Todoerti K., Grosso V., Tamagno I., et al. Gene expression profiling uncovers molecular classifiers for the recognition of anaplastic large-cell lymphoma within peripheral T-cell neoplasms. J Clin Oncol 2010; 28 (9): 1583–90. DOI: 10.1200/JCO.2008.20.9759

78. Daugrois C., Bessiere C., Dejean S., Anton-Leberre V., Thérèse C., Pyronnet S., et al. Gene Expression Signature Associated with Clinical Outcome in ALK-Positive Anaplastic Large Cell Lymphoma. Cancers 2021; 13: 5523. DOI: 10.3390/CANCERS13215523

79. Turner S.D. The Pathogenesis of Anaplastic Large Cell Lymphoma. In: Abla O., Attarbaschi A. (eds.). Non-Hodgkin’s Lymphoma in Childhood and Adolescence. Springer International Publishing: Cham; 2019. Рp. 57–65.


Рецензия

Для цитирования:


Абрамов Д.С., Федорова А.С., Волчков Е.В., Мякова Н.В., Коновалов Д.М. Современные представления об этиологии и патогенезе ALK-позитивной анапластической крупноклеточной лимфомы. Вопросы гематологии/онкологии и иммунопатологии в педиатрии. 2024;23(1):180-191. https://doi.org/10.24287/1726-1708-2024-23-1-180-191. EDN: QZKGMJ

For citation:


Abramov D.S., Fedorova A.S., Volchkov E.V., Myakova N.V., Konovalov D.M. Current views on the etiology and pathogenesis of ALK-positive anaplastic large cell lymphoma. Pediatric Hematology/Oncology and Immunopathology. 2024;23(1):180-191. (In Russ.) https://doi.org/10.24287/1726-1708-2024-23-1-180-191. EDN: QZKGMJ

Просмотров: 473


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1726-1708 (Print)
ISSN 2414-9314 (Online)